A Spatio-Temporal Weighted Filling Method for Missing AOD Values
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. MAIAC AOD
2.1.2. AERONET AOD
2.2. Method
2.2.1. Spatio-Temporal Correlation Detection
2.2.2. Spatio-Temporal Weighted Model
3. Experiments and Results Analysis
3.1. Spatial Correlation
3.2. Time Correlation
3.3. Spatio-Temporal Weighted
3.4. Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiser, D.P.; Qian, Y. Decreasing Trends in Sunshine Duration over China for 1954–1998: Indication of Increased Haze Pollution? Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H. The Formation, Properties and Impact of Secondary Organic Aerosol: Current and Emerging Issues. Atmospheric Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 5; pp. 1–1552. [Google Scholar]
- Rosenfeld, D.; Dai, J.; Yu, X.; Yao, Z.; Xu, X.; Yang, X.; Du, C. Inverse Relations between Amounts of Air Pollution and Orographic Precipitation. Science 2007, 315, 1396–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzmann, M.; Weser, H.; Cherian, R. Robust Response of Asian Summer Monsoon to Anthropogenic Aerosols in CMIP5 Models. J. Geophys. Res. Atmos. 2014, 119, 11–321. [Google Scholar] [CrossRef]
- Guo, J.; Su, T.; Chen, D.; Wang, J.; Li, Z.; Lv, Y.; Guo, X.; Liu, H.; Cribb, M.; Zhai, P. Declining Summertime Local-Scale Precipitation Frequency over China and the United States, 1981–2012: The Disparate Roles of Aerosols. Geophys. Res. Lett. 2019, 46, 13281–13289. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Arienzo, A.; Bilal, M.; Garzelli, A.; Pappalardo, G.; Lolli, S. A Dark Target Kalman Filter Algorithm for Aerosol Property Retrievals in Urban Environment Using Multispectral Images. Urban Clim. 2022, 43, 101135. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Resolution Imaging Spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A Surface Reflectance Scheme for Retrieving Aerosol Optical Depth over Urban Surfaces in MODIS Dark Target Retrieval Algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-Coverage High-Resolution Daily PM2.5 Estimation Using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar]
- Jung, C.-R.; Chen, W.-T.; Nakayama, S.F. A National-Scale 1-Km Resolution PM2.5 Estimation Model over Japan Using Maiac Aod and a Two-Stage Random Forest Model. Remote Sens. 2021, 13, 3657. [Google Scholar] [CrossRef]
- Song, C.; Wei, Q.; Fan, L. Filling the Missing Data of AOD Using the Situ PM2.5 Monitoring Measurements in the Beijing-Tianjin-Hebei Region. China Environ. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Guo, L.; Meng, F.; Ma, M. Spatiotemporal Variation and Influencing Factors of AOD in the North China Plain. Environ. Sci. 2022, 43, 3483–3493. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-Based Mapping of Daily High-Resolution Ground PM2.5 in China via Space-Time Regression Modeling. Remote. Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Tang, Q.; Bo, Y.; Zhu, Y. Spatiotemporal Fusion of Multiple-Satellite Aerosol Optical Depth (AOD) Products Using Bayesian Maximum Entropy Method. J. Geophys. Res. Atmos. 2016, 121, 4034–4048. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Large-Scale MODIS AOD Products Recovery: Spatial-Temporal Hybrid Fusion Considering Aerosol Variation Mitigation. ISPRS J. Photogramm. Remote Sens. 2019, 157, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, H.; Dong, J.; Poslad, S.; Li, R.; Zhang, X.; Rui, X. A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China. Remote Sens. 2020, 12, 2825. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Shi, Y.; Jin, S.; Jin, Y.; Gong, W. The Characteristics and Sources of the Aerosols within the Nocturnal Residual Layer over Wuhan, China. Atmos. Res. 2020, 241, 104959. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database–Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Filonchyk, M.; Hurynovich, V. Validation of MODIS Aerosol Products with AERONET Measurements of Different Land Cover Types in Areas over Eastern Europe and China. J. Geovisualization Spat. Anal. 2020, 4, 10. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Evaluation and Comparison of MODIS Collection 6.1 Aerosol Optical Depth against AERONET over Regions in China with Multifarious Underlying Surfaces. Atmos. Environ. 2019, 200, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Ming, D.; Qiu, Y.; Zhou, W. Applying Spatial Statistics into Remote Sensing Pattern Recognition: With Case Study of Cropland Extraction Based on GeOBIA. Acta Geod. Cartogr. Sin. 2016, 45, 825–833. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Rui, X.; Tang, J. A Spatio-Temporal Weighted Filling Method for Missing AOD Values. Atmosphere 2022, 13, 1080. https://doi.org/10.3390/atmos13071080
Gao R, Rui X, Tang J. A Spatio-Temporal Weighted Filling Method for Missing AOD Values. Atmosphere. 2022; 13(7):1080. https://doi.org/10.3390/atmos13071080
Chicago/Turabian StyleGao, Rongfeng, Xiaoping Rui, and Jiakui Tang. 2022. "A Spatio-Temporal Weighted Filling Method for Missing AOD Values" Atmosphere 13, no. 7: 1080. https://doi.org/10.3390/atmos13071080
APA StyleGao, R., Rui, X., & Tang, J. (2022). A Spatio-Temporal Weighted Filling Method for Missing AOD Values. Atmosphere, 13(7), 1080. https://doi.org/10.3390/atmos13071080