Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Seasonal Variation in Analysis Results Based on the Vorticity Equation
3.2. Seasonal Variation in Analysis Results Based on the Vorticity Equation
3.3. Physical Links to Seasonal Variation in Large-Scale Atmospheric Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gaona, M.F.R.; Villarini, G.; Zhang, W.; Vecchi, G. The added value of IMERG in characterizing rainfall in tropical cyclones. Atmos. Res. 2018, 209, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Matyas, C.; Li, H.; Tang, J. 2018: Conditions associated with rain field size for tropical cyclones landfalling over the Eastern United States. Atmos. Res. 2018, 214, 375–385. [Google Scholar] [CrossRef]
- Chen, A.; Ho, C.H.; Chen, D.; Azorin-Molina, C. Tropical cyclone rainfall in the Mekong River Basin for 1983–2016. Atmos. Res. 2019, 226, 66–75. [Google Scholar] [CrossRef]
- DeMaria, M.; Sampson, C.R.; Knaff, J.A.; Musgrave, K.D. Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc. 2014, 95, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Courtney, J.B.; Langlade, S.; Sampson, C.R.; Knaff, J.A.; Birchard, T.; Barlow, S.; Kotal, S.D.; Kriat, T.; Lee, W.; Pasch, R.; et al. Operational perspectives on tropical cyclone intensity change part 1: Recent advances in intensity guidance. Trop. Cyclone Res. Rev. 2019, 8, 123–133. [Google Scholar] [CrossRef]
- Hendricks, E.A. Internal dynamical control on tropical cyclone intensity variability–a review. Trop. Cyclone Res. Rev. 2012, 1, 72–78. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B.; Shpund, J. High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res. 2016, 167, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Leroux, M.D.; Wood, K.; Elsberry, R.L.; Cayanan, E.; Hendricks, E.; Kucas, M.; Otto, P.; Rogers, R.; Sampson, B.; Yu, Z. Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev. 2018, 7, 85–105. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhao, K. Synoptic flow patterns and large-Scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev. 2015, 143, 64–87. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L. Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient and implications for tropical cyclone activity. Earths Future 2018, 6, 919–936. [Google Scholar] [CrossRef]
- Chan, J.C.L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 2006, 311, 1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosart, L.F.; Bracken, W.E.; Molinari, J.; Velden, C.S.; Black, P.G. Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev. 2000, 128, 322–352. [Google Scholar] [CrossRef]
- Maru, E.; Shibata, T.; Ito, K.J. Statistical analysis of tropical cyclones in the Solomon Islands. Atmosphere 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. The maximum intensity of hurricanes. J. Atmos. Sci. 1998, 45, 1143–1155. [Google Scholar] [CrossRef]
- Strazzo, S.E.; Elsner, J.B.; LaRow, T.E.; Murakami, H.; Wehner, M.; Zhao, M. The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature. J. Adv. Model. Earth. Syst. 2016, 8, 1037–1054. [Google Scholar] [CrossRef] [Green Version]
- Charney, J.G.; Eliassen, A. On the growth of the hurricane depression. J. Atmos. Sci. 1964, 21, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Cheung, K.K.W.; Elsberry, R.L. Tropical cyclone formations over the western North Pacific in the Navy Operational Global Atmospheric Prediction System forecasts. Wea. Forecast. 2002, 17, 800–820. [Google Scholar] [CrossRef]
- Lee, M.; Frisius, T. 2018: On the role of convective available potential energy (CAPE) in tropical cyclone intensification. Tellus A 2018, 70, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, S.; Li, W.; Fang, R.; Liu, H. Relative vorticity is the major environmental factor controlling tropical cyclone intensification over the western North Pacific. Atmos. Res. 2020, 237, 104874. [Google Scholar] [CrossRef]
- Franc, N.; Götmark, F.; Økland, B.; Nordén, B.; Paltto, H. Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biol. Conserv. 2007, 135, 86–98. [Google Scholar] [CrossRef]
- Abudu, S.; Cui, C.; King, J.P.; Moreno, J.; Bawazir, A.S. Modeling of daily pan evaporation using partial least squares regression. Sci. China. Tech. Sci. 2010, 54, 163–174. [Google Scholar] [CrossRef]
- Chan, J.C.L. Thermodynamic control on the climate of intense tropical cyclones. Proc. R. Soc. A 2009, 465, 3011–3021. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Li, C.; Wang, D. Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on an interdecadal time scale. Adv. Atmos. Sci. 2012, 29, 249–262. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. Int. J. Climatol. 2012, 32, 190–202. [Google Scholar] [CrossRef]
- Lee, D.K.; Cha, D.H.; Jin, C.S.; Choi, S.J. A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci. 2013, 49, 655–664. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B. Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Clim. Dyn. 2019, 53, 2697–2714. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Kousky, V.E.; Higgins, R.W.; Yoo, S.; Liang, J.; Fan, Y. Simulations and seasonal prediction of the Asian Summer Monsoon in the NCEP climate forecast system. J. Clim. 2008, 21, 3755–3775. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.; Huang, A.; Li, B. Seasonal and intraseasonal variations of East Asian summer monsoon precipitation simulated by a regional air-sea coupled model. Adv. Atmos. Sci. 2013, 30, 315–329. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D.J. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M.A.; Tuleya, R.E.; Ross, R.J. Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev. 1990, 118, 2185–2198. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M.A.; Ross, R. An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G.; Chorley, A.R.J. Atmosphere, Weather and Climate, 4th ed.; Methuen: London, UK, 1982; p. 407. [Google Scholar]
- Terry, J.P. Tropical Cyclones; Springer: New York, NY, USA, 2007; pp. 26–32. [Google Scholar] [CrossRef]
- Liang, C.K.; Eldering, A.; Gettelman, A.; Tian, B.; Wong, S.; Fetzer, E.J.; Liou, K.N. Record of tropical interannual variability of temperature and water vapor from a combined AIRS-MLS data set. J. Geophys. Res. 2011, 116, D06103. [Google Scholar] [CrossRef] [Green Version]
- Suneeth, K.V.; Das, S.S. Zonally resolved water vapour coupling with tropical tropopause temperature: Seasonal and interannual variability, and influence of the Walker circulation. Clim. Dyn. 2020, 54, 4657–4673. [Google Scholar] [CrossRef]
Summer (July–August) | Autumn (September–October) | |
---|---|---|
Q TCs (thermodynamic) | 13 | 8 |
CAPE TCs (thermodynamic) | 9 | 6 |
SST TCs (thermodynamic) | 3 | 2 |
VOR TCs (dynamic) | 32 | 36 |
VWS TCs (dynamic) | 7 | 5 |
DIV TCs (dynamic) | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, S.; Zhou, M.; Chen, Y.; Zhang, A.; Tu, C.; Li, W. Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific. Atmosphere 2022, 13, 795. https://doi.org/10.3390/atmos13050795
Wu Y, Chen S, Zhou M, Chen Y, Zhang A, Tu C, Li W. Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific. Atmosphere. 2022; 13(5):795. https://doi.org/10.3390/atmos13050795
Chicago/Turabian StyleWu, Yusi, Shumin Chen, Mingsen Zhou, Yilun Chen, Aoqi Zhang, Chaoyong Tu, and Weibiao Li. 2022. "Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific" Atmosphere 13, no. 5: 795. https://doi.org/10.3390/atmos13050795
APA StyleWu, Y., Chen, S., Zhou, M., Chen, Y., Zhang, A., Tu, C., & Li, W. (2022). Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific. Atmosphere, 13(5), 795. https://doi.org/10.3390/atmos13050795