The Effect of the Water Tower of Typhoon Mangkhut (2018)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Circulation Background
3.2. Water Vapor Transport
4. Discussion
5. Conclusions
- The factor triggering this typhoon’s long-distance heavy rain was the high-level water vapor transport on the east side of Taiwan Island caused by Typhoon Mangkhut, which spread northward under the influence of the typhoon’s high-level divergent airflow, and gradually formed this long-distance heavy rainfall. At the same time, the outer wind field of Typhoon Mangkhut produced a low-level jet of 700 hPa, which provided sufficient water vapor and momentum for the formation of heavy precipitation.
- With the continuous transportation of water vapor from the upper layer to the north, precipitation in the Yangtze River Delta region gradually increased, and the layered precipitation played a major role in this event. Convective precipitation played a secondary role.
- The upper layer of the typhoon maintained the outward jet for a long time. The strong updraft in the center of the typhoon played a role in this event, and the continued support of the typhoon’s peripheral circulation also played a role. Under their combined action, the high-altitude water vapor maintained horizontal transport for a long time.
- A typhoon water tower has two conveying heights, 150–200 hPa and 500–700 hPa. The high-level transport is responsible for the generation of precipitation particles, and the middle-level transport is responsible for their rapid development. This is very different from the increase in the coalescence of droplets promoted by traditional monsoon lower-level water vapor transport.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ades, M.; Adler, R.; Aldeco, L.S.; Alejandra, G.; Alfaro, E.J.; Aliaga-Nestares, V.; Allan, R.P.; Allan, R.; Alves, L.M.; Amado, J.A.; et al. State of the climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, SI-S305. [Google Scholar]
- Fumin, R.; Gleason, B.; Easterling, D. Typhoon Impacts on China’s Precipitation during 1957–1996. Adv. Atmos. Sci. 2002, 19, 943–952. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Kristovich, D.A.; Gleason, B.; Stoecker, L.; Smith, R. Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett. 2010, 37, 24. [Google Scholar] [CrossRef]
- Houze, R.A. Clouds and precipitation in tropical cyclones. Int. Geophys. 2014, 104, 287–327. [Google Scholar]
- Chen, Y.; Zhai, P. Persistent extreme precipitation events in China during 1951–2010. Clim. Res. 2013, 57, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of tropical cyclones to rainfall at the global scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Zhou, Y.P. Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific. J. Geophys. Res. Atmos. 2012, 117, 3. [Google Scholar] [CrossRef]
- Didlake, A.C., Jr.; Houze, R.A., Jr. Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos. Sci. 2013, 70, 504–523. [Google Scholar] [CrossRef] [Green Version]
- Didlake, A.C.; Houze, R.A. Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci. 2013, 70, 1891–1911. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ren, F.; Li, W.; Wang, X. Climatic Characteristics of Typhoon Precipitation over China. J. Trop. Meteorol. 2008, 14, 125–128. [Google Scholar]
- Galarneau, T.J., Jr.; Bosart, L.F.; Schumacher, R.S.J.M.W.R. Predecessor rain events ahead of tropical cyclones. Mon. Weather. Rev. 2010, 138, 3272–3297. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ren, F.; Li, W.; Wang, X. Topographic Influence of Taiwan Island Island on Typhoon “Matmo”. Chin. J. Atmos. Sci. 2017, 41, 1037–1058. [Google Scholar]
- Ge, X.; Li, T.; Zhang, S.; Peng, M. What causes the extremely heavy rainfall in Taiwan Island during Typhoon Morakot (2009)? Atmos. Sci. Lett. 2010, 11, 46–50. [Google Scholar]
- Jiang, X.; Ren, F.; Li, Y.; Qiu, W.; Ma, Z.; Cai, Q. Characteristics and Preliminary Causes of Tropical Cyclone Extreme Rainfall Events over Hainan Island. Adv. Atmos. Sci. 2018, 35, 580–591. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, P. The Initiation and Development of Convective Rainbands to the North of the Landfalling Typhoon Matmo (2014). Chin. J. Atmos. Sci. 2018, 42, 1038–1054. [Google Scholar]
- Pan, J.; Zhou, L.; Lu, W.; Luo, L.; Zhai, G. Comparative Analyses of Mechanisms and Energy Budgets of Local Extreme Rainfall Events Caused by Remnant Clouds of Two Typhoons with Similar Tracks. Chin. J. Atmos. Sci. 2019, 43, 1399–1412. [Google Scholar]
- Chen, T.C.; Wang, S.-Y.; Huang, W.-R.; Yen, M.-C. Variation of the East Asian summer monsoon rainfall. J. Clim. 2004, 17, 744–762. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Fan, Y.; Xu, Z.; Li, F. Analysis of Long-Distance Heavy Rainfall Caused by Typhoon Mangosteen (2018). Chin. J. Atmos. Sci. 2021, 45, 573–587. [Google Scholar]
- Yan, L.; Zhou, Y.; Wang, Y. Analysis on Different Characteristics and Causes of Precipitation Distribution during the Landing of Typhoon “Soudelor” (1513) and Typhoon “Matmo” (1410) with Similar Tracks. Chin. J. Atmos. Sci. 2019, 43, 297–310. [Google Scholar]
- Zhang, Q.; Gu, X.; Li, J.; Shi, P.; Singh, V.P. The impact of tropical cyclones on extreme precipitation over coastal and Inland Areas of China and its association to ENSO. J. Clim. 2018, 31, 1865–1880. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X. Moisture Sources and Quantitative Analyses of Source Contributions of Precipitation Associated with Rammasun (1409). Chin. J. Atmos. Sci. 2020, 44, 341–355. [Google Scholar]
- Wang, G.; Lan, H.; Liu, Z. Stable isotope record of super typhoon Lekima (2019). Atmos. Res. 2021, 264, 105822. [Google Scholar] [CrossRef]
- Bu, S.; Li, Y. Comparative Analysis of Precipitation Distributions of Tropical Cyclones Making Landfall in East China. Chin. J. Atmos. Sci. 2020, 44, 27–38. [Google Scholar]
- Saito, K.; Matsunobu, T. Northward Ageostrophic Winds Associated with a Tropical Cyclone. Part 2: Moisture Transport and Its Impact on PRE. Sci. Online Lett. Atmos. 2020, 16, 198–205. [Google Scholar] [CrossRef]
- Han, B.; Du, Y.; Wu, C.; Liu, X. Microphysical characteristics of the coexisting frontal and warm-sector heavy rainfall in South China. J. Geophys. Res. Atmos. 2021, 126, e2021JD035446. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Liu, C.; He, Y.; Wang, S.; Hou, P.; Zhu, X.; Wu, Z. Wind Field Reconstruction and Analysis of Super Typhoon Mangkhut (1822). J. Coast. Res. 2020, 99 (Suppl. 1), 151–157. [Google Scholar] [CrossRef]
- He, Y.C.; He, J.; Chen, W.; Chan, P.; Fu, J.; Li, Q. Insights from Super Typhoon Mangkhut (1822) for wind engineering practices. J. Wind. Eng. Ind. Aerodyn. 2020, 117, 104238. [Google Scholar] [CrossRef]
- Choy, C.W.; Lau, D.S.; He, Y. Super typhoons Hato (1713) and Mangkhut (1822), part I: Analysis of maximum intensity and wind structure. Weather 2020, 1–6. [Google Scholar] [CrossRef]
- Lo, H.S.; Lee, Y.-K.; Po, B.H.-K.; Wong, L.-C.; Xu, X.; Wong, C.-F.; Wong, C.-Y.; Tam, N.F.-Y.; Cheung, S.-G. Impacts of Typhoon Mangkhut in 2018 on the deposition of marine debris and microplastics on beaches in Hong Kong. Sci. Total Environ. 2020, 716, 137172. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Zhao, K.; Wang, P.; Wang, D.; Sou, I.M.; Yang, Z.; Hu, J.; Tang, X.; Mok, K.M.; et al. A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on Coastal Inundation in Macau. J. Geophys. Res. Ocean. 2019, 124, 9590–9619. [Google Scholar] [CrossRef]
- Liu, L.S.; Lv, X.Y.; Gao, S.Z. Overview of typhoon activity in the Northwest Pacific and South China Sea in 2018. J. Mar. Meteorol. 2019, 39, 1–12. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Tang, G.Q.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Siuki, S.K.; Saghafian, B.; Moazami, S. Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products. Int. J. Remote Sens. 2017, 38, 558–571. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Hu, D.; Di, Y.; Wang, Y. Performance evaluation of IMERG precipitation products during typhoon Lekima (2019). J. Hydrol. 2021, 597, 126307. [Google Scholar] [CrossRef]
- Qian, W.H. Physical decomposition principle of regional-scale atmospheric transient anomaly. Chinese J. Geophys. 2012, 55, 1439–1448. (In Chinese) [Google Scholar] [CrossRef]
- Yu, J.Q.; Gao, S.; Zhang, L.; Shen, X.; Guo, L. Analysis of A Remote Rainstorm in the Yangtze River Delta Region Caused by Typhoon Mangkhut (2018). J. Mar. Sci. Eng. 2020, 8, 345. [Google Scholar] [CrossRef]
- Lavers, D.A.; Ralph, F.M.; Waliser, D.E.; Gershunov, A.; Dettinger, M.D. Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett. 2015, 42, 5617–5625. [Google Scholar] [CrossRef] [Green Version]
- Kudo, T.; Kawamura, R.; Hirata, H.; Ichiyanagi, K.; Tanoue, M.; Yoshimura, K. Large-scale vapor transport of remotely evaporated seawater by a Rossby wave response to typhoon forcing during the Baiu/Meiyu season as revealed by the JRA-55 reanalysis. J. Geophys. Res. Atmos. 2014, 119, 8825–8838. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, L.; Li, Z.; Wang, Y. Quantitative Attribution of Vertical Motion Responsible for Summer Heavy Rainfall Over North China. J. Geophys. Res. Atmos. 2022, 127, e2021JD035765. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Moisture Sources and Transport for Extreme Precipitation over Henan in July 2021. Geophys. Res. Lett. 2022, 49, e2021GL097446. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Hobbs, P.V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII. A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 1984, 41, 2949–2972. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Cloud dynamics. Cloud Dyn. 1993, 3, 47–76. [Google Scholar]
- Zhang, Y.; Zheng, H.; Zhang, L.; Huang, Y.; Liu, X.; Wu, Z. Assessing the Effect of Riming on Snow Microphysics: The First Observational Study in East China. J. Geophys. Res. Atmos. 2021, 126, e2020JD033763. [Google Scholar] [CrossRef]
- Lawson, R.P.; Woods, S.; Morrison, H. The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds. J. Atmos. Sci. 2015, 72, 2429–2445. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Hasson, S.U.; Gerlitz, L.; Talchabhadel, R.; Schenk, E.; Schickhoff, U.; Scholten, T.; Böhner, J. WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmos. Res. 2018, 214, 21–35. [Google Scholar] [CrossRef]
- Zhou, T.J.; Yu, R.C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Atmos. 2005, 110, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Q.; Xu, C.; Duan, J.; Wang, Y.; Du, J.; Zha, S.; Leng, C.; Li, X.; Cheng, T.; Tao, J.; et al. Inter-Annual Variations of Cloud and Precipitation and Their Possible Relationships with Surface Aerosols in Shanghai. Aerosol Air Qual. Res. 2015, 15, 1367–1379. [Google Scholar] [CrossRef] [Green Version]
- Schoeberl, M.R.; Jensen, E.J.; Pfister, L.; Ueyama, R.; Avery, M.; Dessler, A.E. Convective Hydration of the Upper Troposphere and Lower Stratosphere. J. Geophys. Res. Atmos. 2018, 123, 4583–4593. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, A.; Zhang, Y.; Cui, C.; Wan, R.; Wang, B.; Fu, Y. A Heavy Precipitation Event in the Yangtze River Basin Led by an Eastward Moving Tibetan Plateau Cloud System in the Summer of 2016. J. Geophys. Res. Atmos. 2020, 125, e2020JD032429. [Google Scholar] [CrossRef]
- Prakash, P. Mechanisms of precipitation initiation in convective clouds around Delhi-a radar study. Indian J. Radio Space Phys. 1998, 27, 7–10. [Google Scholar]
- Zhang, W.G.; Xu, G.; Xi, B.; Ren, J.; Wan, X.; Zhou, L.; Cui, C.; Wu, D. Comparative Study of Cloud Liquid Water and Rain Liquid Water Obtained From Microwave Radiometer and Micro Rain Radar Observations Over Central China During the Monsoon. J. Geophys. Res. Atmos. 2020, 125, e2020JD032456. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Chen, Y.; Chen, S.; Li, W.; Zhang, A. The Effect of the Water Tower of Typhoon Mangkhut (2018). Atmosphere 2022, 13, 636. https://doi.org/10.3390/atmos13040636
Zuo H, Chen Y, Chen S, Li W, Zhang A. The Effect of the Water Tower of Typhoon Mangkhut (2018). Atmosphere. 2022; 13(4):636. https://doi.org/10.3390/atmos13040636
Chicago/Turabian StyleZuo, Haosheng, Yilun Chen, Shumin Chen, Weibiao Li, and Aoqi Zhang. 2022. "The Effect of the Water Tower of Typhoon Mangkhut (2018)" Atmosphere 13, no. 4: 636. https://doi.org/10.3390/atmos13040636
APA StyleZuo, H., Chen, Y., Chen, S., Li, W., & Zhang, A. (2022). The Effect of the Water Tower of Typhoon Mangkhut (2018). Atmosphere, 13(4), 636. https://doi.org/10.3390/atmos13040636