Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
- ➢
- The results of mean maximum temperature indicated significantly increasing trends at Shalimar, Gulmarg, Kupwara, Kokernag, and Pahalgam for annual basis but a non-significant increasing trend at Qazigund.
- ➢
- It was found that Pahalgam was the hottest among all stations as the mean maximum temperature has raised by 2.2 °C from 1980 to 2020. However, it was observed that the annual mean maximum temperature over the Kashmir valley followed a non-significant increasing trend from 1980 to 2020.
- ➢
- The average annual mean maximum temperature over Kashmir valley increased by 2.0 °C from 1980 to 2020.
- ➢
- The results of minimum temperature from 1980 to 2020 indicated non-significant increasing trends for annual basis at Qazigund, Gulmarg, and Kupwara but significant increasing trends at Kokernag and Pahalgam, except Shalimar that followed a non-significant decreasing trend.
- ➢
- It was found that the annual mean minimum temperature over the Kashmir valley followed a non-significant increasing trend from 1980 to 2020. The average annual mean minimum temperature over the Kashmir valley increased to the extent of 1.10 °C from 1980 to 2020.
- ➢
- Precipitation showed a non-significant decreasing trend with respect to time series analysis over 1980–2020 at all the stations and in Kashmir valley.
- ➢
- These changes will affect both the hydrological processes and environmental systems, which ultimately can affect the ecological balance of the Himalayan region.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romshoo, S.A.; Rashid, I. Assessing the impacts of changing land cover and climate on Hokersar wet land in Indian Himalayas. Arab. J. Geosci. 2014, 7, 143–160. [Google Scholar] [CrossRef]
- Dar, R.A.; Romshoo, S.A.; Chandra, R.; Ahmad, I. Tectonogeomorphic study of the Karewa Basin of Kashmir valley. J. Asian Earth Sci. 2014, 92, 143–156. [Google Scholar] [CrossRef]
- Ahmad, L.; Kanth, R.H.; Parvaze, S.; Mahdi, S.S. Experimental Agrometeorology: A Practical Manual; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; pp. 112–118. [Google Scholar]
- Yu, D.; Liu, Y.; Shi, P.; Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 2019, 103, 114–123. [Google Scholar] [CrossRef]
- Horton, D.R.B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, J.M.; Razuvzyev, V.; Plummer, N.; Jamason, P.; Folland, C.K. Maximum and minimum temperature trends for the globe. Science 1997, 227, 364–365. [Google Scholar]
- Majeed, U.; Rashid, I.; Sattar, A.; Allen, S.; Stoffel, M.; Nüsser, M.; Schmidt, S. Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans- Himalayan region of Ladakh, India. Sci. Total Environ. 2021, 756, 144008. [Google Scholar] [CrossRef]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Rana, A.; Moradkhani, H.; Qin, Y. Understanding the joint behavior of temperature and precipitation for climate change impact studies. Theor. Appl. Climatol. 2017, 129, 321–339. [Google Scholar] [CrossRef]
- Laepple, T.; Huybers, P. Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA 2014, 111, 16682–16687. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Hashino, M. Long term trends of annual and monthly precipitation in Japan. J. Am. Water Resou. Assoc. 2003, 39, 587–596. [Google Scholar] [CrossRef]
- Raucher, R.S. The future of research on climate change impacts on water: A workshop focused on adaption strategies and information needs. Water Res. Found. 2011, 1, 40–43. [Google Scholar]
- Singh, D.; Jain, S.K.; Gupta, R.D.; Kumar, S.; Rai, S.P.; Jain, N. Analyses of observed and anticipated changes in extreme climate events in the Northwest Himalaya. Climate 2016, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Jain, S.K.; Gupta, R.D. Trend in observed and projected maximum and minimum temperature over NW Himalayan basin. J. Mount. Sci. 2015, 12, 417–433. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol. 2010, 30, 535–548. [Google Scholar] [CrossRef]
- Jhajharia, D.; Singh, V.P. Trends in temperature, diurnal temperature range and sunshine duration in northeast India. Int. J. Climatol. 2011, 31, 1353–1367. [Google Scholar] [CrossRef]
- Laxmi, L.N. Impact of Weather Parameters on Productivity of Selected Crops in Mandya District—A Statistical Approach. Ph.D. Thesis, University of Agricultural Sciences, GKVK, Bangluru, India, 2014. [Google Scholar]
- UNFCCC. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries; United Nations Framework Convention on Climate Change (UNFCCC): Bonn, Germany, 2007. [Google Scholar]
- NMA. Climate Change National Adaptation Programme of Action (NAPA) of Ethiopia; National Meteorological Agency (NMA): Addis Ababa, Ethiopia, 2007. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Cheung, W.H.; Senay, G.B.; Sing, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Analysis of trends in temperature data in arid and semiarid regions of Iran. Glob. Planet Change 2011, 79, 1–10. [Google Scholar] [CrossRef]
- Kothawale, D.R.; Rupa Kumar, K. On the recent changes in surface temperature trends over India. Geophys. Ras. Lett. 2005, 32, 18714. [Google Scholar] [CrossRef]
- Roy, S.S.; Balling, R.C. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophys. Res. Lett. 2005, 32, L12702. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the 20th century. Clim. Change 2007, 85, 159–177. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbinization and land use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Robert, K.K.; Tucker, C.J.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Y.; Dong, W.J.; WN., L.Y.; Wei, J.F.; Chen, P.Y.; Lee, D.K. Impact of land use changes on surface warming in China. Adv. Atmos. Sci. 2005, 2, 169–189. [Google Scholar]
- Dar, G.H.; Christensen, K.I. Habitat diversity and zonality of vegetation in Sind Valley, Kashmir Himalaya. Nat. Biosph. 1999, 4, 49–71. [Google Scholar]
- Romshoo, S.A.; Dar, R.A.; Rashid, I.; Marazi, I.; Ali, N.; Zaz, S. Implications of shrinking cryosphere under changing climate on the stream flows of the Upper Indus Basin. Arct. Antarct. Alp. Res. 2015, 47, 627–644. [Google Scholar] [CrossRef]
- Khattak, M.S.; Babel, M.S.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Inter-Res. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Webber, J.; Hawkins, C. Statistical Analysis Application to Business and Economics; Harper and Row: New York, NY, USA, 1980. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- WMO. WMO Statement on the State of the Global Climate in 2017; World Meteorological Organization, Communication and Public Affairs Office: Geneva, Switzerland, 2017; p. WMO-No. 1212. [Google Scholar]
- Kohler, T.; Maselli, D. Mountains and climate change. From understanding to action. Geogr. Bernensia 2010, 30, 53–55. [Google Scholar]
- Muslim, M.; Romshoo, S.A.; Rather, A.Q. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model. Environ. Monit. Assess. 2010, 187, 316. [Google Scholar] [CrossRef]
- Negi, G.C.S.; Samal, P.K.; Kuniyal, J.C.; Kothyari, B.P.; Sharma, R.K.; Dhyani, P.P. Impact of climate change on the western Himalayan mountain ecosystems: An overview. Trop. Ecol. 2012, 53, 345–356. [Google Scholar]
- Rashid, I.; Romshoo, A.S.; Chaturvedi, R.K.; Ravindranath, N.H.; Raman, S.; Mathangi, J.; Lakshmi, T.V.; Sharma, J. Projected Climate Change Impacts on Vegetation Distribution over Kashmir Himalaya. Clim. Change 2015, 132, 601–613. [Google Scholar] [CrossRef]
- Rajbhandari, R.; Shrestha, A.B.; Kulkarni, A.; Patwardhan, S.K.; Bajracharya, S.R. Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim. Dyn. 2015, 44, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Zaz, S.N.; Romshoo, S.A.; Krishnamoorthy, R.T.; Viswanadhapalli, Y. Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: Implications for remote influence and extreme events. Atmos. Chem. Phys. 2019, 19, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Jaswal, A.K.; Rao, G.S.P. Recent trends in meteorological parameters over Jammu and Kashmir. Mausam 2010, 61, 369–382. [Google Scholar] [CrossRef]
- Dimri, A.P.; Choudhary, A.; Kumar, D. Elevation Dependent Warming over Indian Himalayan Region. In Himalayan Weather and Climate and Their Impact on the Environment; Springer Cham: Berlin/Heidelberg, Germany, 2020; pp. 141–156. [Google Scholar]
- Rashid, I.; Majeed, U.; Aneaus, S.; C’anovas, J.A.B.; Stoffel, M.; Najar, N.A.; Bhat, I.A.; Lotus, S. Impacts of erratic snowfall on apple orchards in Kashmir Valley, India. Sustainability 2020, 12, 9206. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Mathur, P.; Rathore, B.P.; Alex, S.; Thakur, N.; Kumar, M. Effect of global warming on snow ablation pattern in the Himalaya. Curr. Sci. 2002, 83, 120–123. [Google Scholar]
- Murtaza, K.O.; Romshoo, S.A. Recent Glacier Changes in the Kashmir Alpine Himalayas, India. Geocarto Int. 2016, 32, 188–205. [Google Scholar] [CrossRef]
- Za, Z.; Sumira, N.; Shakil, A.R. Recent variation in temperature trends in Kashmir Valley (India). J. Himal. Ecol. Sustain. Dev. 2013, 8, 42–63. [Google Scholar]
- Shrestha, A.B.; Wake, C.P.; Mayeski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity. An analysis based on temperature records from Nepal for the period 1971–1994. J. Clim. 1999, 12, 2773–2787. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Archer, D.R. Conflicting signals of climate change in the upper Indus Basin. J. Climatol. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jain, S.K. Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last century. Quat. Int. 2010, 212, 64–69. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanam, M.S.; Xavier, P.K. Increasing trends of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, H.; Hafner, J.; Sooraj, K.P.; Piilai, P. Global warming shifts the monsoon circulation, drying south Asia. J. Clim. 2013, 26, 2701–2718. [Google Scholar] [CrossRef]
- Shafiq, M.U.; Rasool, R.; Ahmed, P.; Dimri, A.P. Temperature and precipitation trends in Kashmir Valley, north western Himalayas. Theor. Appl. Climatol. 2019, 135, 293–304. [Google Scholar] [CrossRef]
- Qadri, H.; Dar, I.A. A preliminary study on the changing patterns of temperature and precipitation of Srinagar, Kashmir, India. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 411–419. [Google Scholar]
Station | Location | Alt. (m asl.) |
---|---|---|
Shalimar (Srinagar) | 34°05′ and 74°50′ | 1588 |
Qazigund | 33°35′ and 75°05′ | 1690 |
Pahalgam | 34°02′ and 75°20′ | 2310 |
Gulmarg | 34°03′and 74°24′ | 2706 |
Kupwara | 34°25′ and 74°18′ | 1609 |
Kokernag | 33°40′ and 75°17′ | 1910 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lone, B.A.; Qayoom, S.; Nazir, A.; Ahanger, S.A.; Basu, U.; Bhat, T.A.; Dar, Z.A.; Mushtaq, M.; Sabagh, A.E.; Soufan, W.; et al. Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020. Atmosphere 2022, 13, 749. https://doi.org/10.3390/atmos13050749
Lone BA, Qayoom S, Nazir A, Ahanger SA, Basu U, Bhat TA, Dar ZA, Mushtaq M, Sabagh AE, Soufan W, et al. Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020. Atmosphere. 2022; 13(5):749. https://doi.org/10.3390/atmos13050749
Chicago/Turabian StyleLone, Bilal Ahmad, Sameera Qayoom, Aijaz Nazir, Shafat Ahmad Ahanger, Umer Basu, Tauseef Ahmad Bhat, Zahoor Ahmad Dar, Muntazir Mushtaq, Ayman El Sabagh, Walid Soufan, and et al. 2022. "Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020" Atmosphere 13, no. 5: 749. https://doi.org/10.3390/atmos13050749
APA StyleLone, B. A., Qayoom, S., Nazir, A., Ahanger, S. A., Basu, U., Bhat, T. A., Dar, Z. A., Mushtaq, M., Sabagh, A. E., Soufan, W., Habib ur Rahman, M., & Fathallah El-Agamy, R. (2022). Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020. Atmosphere, 13(5), 749. https://doi.org/10.3390/atmos13050749