Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Sampling
2.2. Mass and Elemental Analysis
2.3. Data Analysis
2.3.1. Enrichment Factor (EF)
2.3.2. Indoor Enrichment Factor (Indoor EF)
3. Results
3.1. Mass Concentration
3.2. Elemental Composition
3.3. Elemental Mass Size Distribution
3.4. Single Particle Analysis by Scanning Electron Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Special Eurobarometer 468: Attitudes of European Citizens Towards the Environment. Available online: https://data.europa.eu/euodp/en/data/dataset/S2156_88_1_468_ENG (accessed on 4 January 2022).
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 15 October 2021).
- World Health Organisation. Burden of Disease from the Joint Effects of Household and Ambient Air Pollution for 2016. Available online: www.who.int/airpollution/data/AP_joint_effect_BoD_results_May2018.pdf?ua=1 (accessed on 15 October 2021).
- European Environment Agency. Air Quality in Europe—2018 Report. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2018 (accessed on 10 December 2021).
- World Health Organisation. Ambient Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 20 February 2022).
- International Agency for Research on Cancer. Outdoor air Pollution a Leading Environmental Cause of Cancer Deaths. Available online: https://www.iarc.who.int/news-events/iarc-outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths/ (accessed on 1 February 2022).
- Putaud, J.-P. Physical and Chemical Characteristics of Particulate Matter from 60 Rural, Urban, and Kerbside Sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office. Daily Time Use of the 15–74 Years Old Population in 2010. Available online: http://www.ksh.hu/docs/hun/xftp/stattukor/idomerleg10.pdf (accessed on 15 October 2021).
- European Environment Agency, Indoor Air Quality. Available online: https://www.eea.europa.eu/signals/signals-2013/articles/indoor-air-quality (accessed on 15 October 2021).
- Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 2018, 187, 301–316. [Google Scholar] [CrossRef]
- Ramos, M.J.; Vasconcelos, A.; Faria, M. Comparison of Particulate Matter Inhalation for Users of Different Transport Modes in Lisbon. Transp. Res. Procedia 2015, 10, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Tsai, D.-H.; Wu, Y.-H.; Chan, C.-C. Comparisons of commuter’s exposure to particulate matters while using different transportation modes. Sci. Total Environ. 2008, 405, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Asmi, E.; Antola, M.; Yli-Tuomi, T.; Jantunen, M.; Aarnio, P.; Mäkelä, T.; Hillamo, R.; Hämeri, K. Driver and passenger exposure to aerosol particles in buses and trams in Helsinki, Finland. Sci. Total Environ. 2009, 407, 3460–3466. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Salma, I.; Pósfai, M.; Kovács, K.; Kuzmann, E.; Homonnay, Z.; Posta, J. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos. Environ. 2009, 43, 3460–3466. [Google Scholar] [CrossRef]
- Salma, I.; Weidinger, T.; Maenhaut, W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 2007, 41, 8391–8405. [Google Scholar] [CrossRef]
- Papp, E.; Nagy, D.; Szoboszlai, Z.; Angyal, A.; Török, Z.; Csepregi, Á.; Furu, E.; Kertész, Z. Investigation of aerosol pollution inside trams in Debrecen, Hungary. Nucl. Instr. Methods Phys. Res. 2020, 477, 138–143. [Google Scholar] [CrossRef]
- Bigazzi, A.Y.; Figliozzi, M.A. Impacts of freeway traffic conditions on in-vehicle exposure to ultrafine particulate matter. Atmos. Environ. 2012, 60, 495–503. [Google Scholar] [CrossRef]
- Hudda, N.; Eckel, S.P.; Knibbs, L.D.; Sioutas, C.; Delfino, R.J.; Fruin, S.A. Linking in-vehicle ultrafine particle exposures to on-road concentrations. Atmos. Environ. 2012, 59, 578–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthaios, V.N.; Kramer, L.J.; Crilley, L.R.; Sommariva, R.; Pope, F.D.; Bloss, W.J. Quantification of within-vehicle exposure to NOx and particles: Variation with outside air quality, route choice and ventilation options. Atmos. Environ. 2020, 240, 117810. [Google Scholar] [CrossRef]
- Moreno, T.; Reche, C.; Rivas, I.; Minguillón, M.C.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M.; et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Martins, V.; Correia, C.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Ioannis Manousakas, M.; Eleftheriadis, K.; Almeida, S.M. Chemical characterisation of particulate matter in urban transport modes. J. Environ. Sci. 2021, 100, 51–61. [Google Scholar] [CrossRef]
- DKV (Debrecen Exclusive Transport Company Ltd.) Vehicle Descriptions. Available online: http://www.dkv.hu/jarmuveink (accessed on 10 September 2021). (In Hungarian).
- Train Types in Hungary. Available online: http://www.vonatosszeallitas.hu/kocsik.html (accessed on 10 September 2021). (In Hungarian).
- Metro Types in Hungary. Available online: http://metros.hu/jarmu/ev.html (accessed on 10 September 2021). (In Hungarian).
- Buck Elite-5 Personal Portable Pump. Available online: https://www.apbuck.com/shop/item.aspx?itemid=449 (accessed on 1 December 2021).
- Sioutas Personal Cascade Impactor. Available online: https://www.skcltd.com/products2/sampling-heads/sioutas-personal-cascade-impactor.html (accessed on 1 December 2021).
- SKC Leland Legacy Pump. Available online: https://www.skcltd.com/products2/air-sampling-pumps/leland-legacy-pump.html (accessed on 1 December 2021).
- Maenhaut, W.; Francois, F.; Cafmeyer, J. The “Gent” stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: Description and instructions for installation and use. In Proceedings of the Research Coordination Meeting on Applied Research on Air Pollution Using Nuclear-Related Analytical Techniques, Vienna, Austria, 30 March–2 April 1993; pp. 249–263. [Google Scholar]
- Borbély-Kiss, I.; Koltay, E.; László, S.; Szabó, G.; Zolnai, L. Experimental and theroretical calibration of a PIXE setup for K and L X-rays. Nucl. Instr. Methods Phys. Res. 1985, 12, 496–504. [Google Scholar] [CrossRef]
- Szabó, G. PIXEKLM Program, User Guide; ATOMKI: Debrecen, Hungary, 2009. [Google Scholar]
- Szabó, G.; Borbély-Kiss, I. PIXYKLM computer package for PIXE analyses. Nucl. Instr. Methods Phys. Res. 1993, 75, 123–127. [Google Scholar] [CrossRef]
- Mason, B.H.; Moore, C.B. Principles of Geochemistry, 4th ed.; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Hungarian Air Quality Network (HAQN). Available online: http://www.levegominoseg.hu/automatic-monitoring-network (accessed on 1 December 2021).
- Praml, G.; Schierl, R. Dust exposure in Munich public transportation: A comprehensive 4-year survey in buses and trams. Int. Arch. Occup. Environ. Health. 2000, 73, 209–214. [Google Scholar] [CrossRef]
- Ripanucci, G.; Grana, M.; Vicentini, L.; Magrini, A.; Bergamaschi, A. Dust in the Underground Railway Tunnels of an Italian Town. J. Occup. Environ. Hyg. 2006, 3, 16–25. [Google Scholar] [CrossRef]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priestman, M.; Tremper, A.H.; Green, D.C. PM2.5 on the London Underground. Environ. Int. 2020, 134, 105188. [Google Scholar] [CrossRef]
- Johansson, C.; Johansson, P.-Å. Particulate matter in the underground of Stockholm. Atmos. Environ. 2003, 37, 3–9. [Google Scholar] [CrossRef]
- Mohsen, M.; Ahmed, M.B.; Zhou, J.L. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia. Transp. Res. D Trans. Environ. 2018, 62, 112–124. [Google Scholar] [CrossRef]
- Li, T.T.; Bai, Y.H.; Liu, Z.R.; Li, J.L. In-train air quality assessment of the railway transit system in Beijing: A note. Transp. Res. D Trans. Environ. 2007, 12, 64–67. [Google Scholar] [CrossRef]
- Park, D.U.; Ha, K.C. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environ. Int. 2008, 34, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, F.; Campana, S. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 2015, 101, 328–337. [Google Scholar] [CrossRef]
- Barmparesos, N.; Assimakopoulos, V.D.; Assimakopoulos, M.N.; Tsairidi, E. Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environ. Sci. 2016, 3, 199–219. [Google Scholar] [CrossRef]
- Şahin, Ü.A.; Onat, B.; Stakeeva, B.; Ceran, T.; Karim, P. PM10 concentrations and the size distribution of Cu and Fe-containing particles in Istanbul’s subway system. Transport. Res. D Trans. Environ. 2012, 17, 48–53. [Google Scholar] [CrossRef]
- Cohen, D.D.; Atanacio, A.; Crawford, J.; Siegele, R. Ion beam techniques for source fingerprinting fine particle air pollution in major Asian-Pacific cities. Nucl. Instr. Meth. Phys. Res. Sect. B 2020, 477, 122–132. [Google Scholar] [CrossRef]
- Salma, I.; Maenhaut, W.; Zemplén-Papp, É.; Záray, G. Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: Physicochemical properties of inorganic species. Atmos. Environ. 2001, 35, 4367–4378. [Google Scholar] [CrossRef]
- Pipal, A.S.; Singh, S.; Satsangi, G.P. Study on bulk to single particle analysis of atmospheric aerosols at urban region. Urban Clim. 2019, 27, 243–258. [Google Scholar] [CrossRef]
- Angyal, A.; Kertész, Z.; Szikszai, Z.; Szoboszlai, Z. Study of Cl-containing urban aerosol particles by ion beam analytical methods. Nucl. Instr. Method Phys. Res. 2010, 268, 2211–2215. [Google Scholar] [CrossRef]
Mode of Transport | Vehicle Type | Date | NP Two-Stage Sampler | PMcoarse; PM2.5 | Sioutas Four-Stage Impactor | Four Size Fractions * | Date | NP Two-Stage Sampler | PMcoarse; PM2.5 | Sioutas Four-Stage Impactor | Four Size Fractions |
---|---|---|---|---|---|---|---|---|---|---|---|
Local bus | VOLVO B9L—ALFA CIVIS 12–18 | 27 September 2012 | X ** | X | - | - | 12 March 2014 | X | X | X | X |
Trolleybus | GANZ SOLARIS TROLLINO 12 | 25 September 2012 | X | X | - | - | 31 March 2014 | X | X | X | X |
IC train | BP 20–67 | 1 October 2012 | X | X | - | - | 20 March 2014 | X | X | X | X |
Old tram (Tram-line 1) | KCSV—6 1S | 24 September 2012 | X | X | - | - | 2 April 2014 | X | X | X | X |
New tram (Tram-line 2) | CAF Urbos 3 | - | - | - | - | 13 March 2014 | X | X | X | X | |
Metro | Ev3 | - | - | - | - | 20 March 2014 | X | X | X | X |
Date | Location | PMcoarse | PM2.5 | PMfine+coarse | HAQN1 PM10 | HAQN2 PM10 | ATOMKI PM2.5–10 | ATOMKI PM2.5 | ATOMKI PM10 |
---|---|---|---|---|---|---|---|---|---|
(µg m−3) | |||||||||
2012 | Local bus | 224 | 168 | 392 | 49 | 46 | - | - | - |
Trolleybus | 159 | 30 | 189 | 28 | 24 | - | - | - | |
IC train | 354 | 19 | 373 | - | - | - | - | - | |
Old tram | 180 | 12 | 192 | 34 | 31 | - | - | - | |
2014 | Local bus | no data | 52 | - | 25 | 33 | 6 | 14 | 20 |
Trolleybus | 160 | 104 | 264 | 22 | 38 | 14 | 20 | 34 | |
IC train | 182 | 66 | 248 | - | - | - | - | - | |
Old tram | 248 | 145 | 393 | 24 | 30 | 13 | 23 | 36 | |
New tram | 29 | 17 | 46 | 28 | 31 | 19 | 17 | 36 | |
Metro | 288 | 189 | 477 | - | - | - | - | - |
Vehicle Type | PM10 (µg m−3) * | PM2.5 (µg m−3) | |
---|---|---|---|
Present study * | Non-A/C Local bus (2012) | 392 | 168 |
Non-A/C Local bus (2014) | no data | 52 | |
Non-A/C Trolleybus (2012) | 189 | 30 | |
Non-A/C Trolleybus (2014) | 264 | 104 | |
Old tram (2012) | 192 | 12 | |
Old Tram (2014) | 393 | 145 | |
New tram (2014) | 46 | 17 | |
IC-train (2012) | 373 | 19 | |
IC-train (2014) | 248 | 66 | |
Metro (2014) | 477 | 189 | |
Hong Kong | Tram | 110–240 | 68–163 |
Non-A/C bus | 80–161 | 78–109 | |
Railway | 41–89 | 29–68 | |
Munich | Bus | 110–165 | - |
Tram | av. 161 ** | - | |
Barcelona | Metro | - | av. 37; 42 |
Bus | - | av. 48; 49; 39 | |
Tram + walking | - | av. 27; 29; 35 | |
Lisbon | Bus | - | av. 28 |
Metro | av. 84 | av. 38 | |
Debrecen * | Old tram—heating s. (2017–18) *** | 70–176 | 31–54 |
Old tram—non-heating s. (2018) *** | 69–152 | 29–50 | |
New tram—heating s. (2017–18) | 36–153 | 17–49 | |
New tram—non-heating s. (2018) | 46–71 | 22–49 |
Local Bus | Trolleybus | Old Tram | IC Train | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | PMcoarse | PM2.5 | PMcoarse | PM2.5 | PMcoarse | PM2.5 | PMcoarse | PM2.5 | ||||||||
(ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | (ng m−3) | EF | |
Al | 5035 | 1 | 1390 | 2 | 3615 | 1 | 1130 | 3 | 2725 | 1 | 1350 | 5 | 2085 | 1 | 1790 | 10 |
Si | 21,160 | 1 | 1570 | 1 | 12,320 | 1 | 680 | 1 | 16,650 | 1 | 1730 | 2 | 2310 | 0.4 | 755 | 1 |
P | 140 | 1 | <DL * | - | 140 | 2 | <DL | - | 65 | 1 | <DL | - | <DL | - | <DL | - |
S | 765 | 25 | 1020 | 540 | 750 | 45 | 1550 | 1300 | 765 | 55 | 1970 | 2045 | 885 | 165 | 945 | 1520 |
Cl | 985 | 65 | 30 | 35 | 9295 | 1075 | 45 | 70 | 1225 | 178 | 50 | 105 | 915 | 340 | 120 | 395 |
K | 3225 | 1 | 425 | 3 | 1640 | 1 | 245 | 3 | 1890 | 2 | 215 | 3 | 800 | 2 | 205 | 5 |
Ca | 8815 | 2 | 600 | 2 | 6660 | 2 | 370 | 0.3 | 5150 | 2 | 305 | 2 | 2560 | 5 | 495 | 5 |
Ti | 650 | - | 40 | - | 380 | - | 25 | - | 300 | - | 20 | - | 120 | - | 15 | - |
V | 30 | 1 | <DL | - | 30 | 1 | <DL | 1 | 20 | 1 | <DL | - | <DL | - | 15 | 15 |
Cr | 100 | 10 | <DL | - | <DL | - | <DL | 10 | 40 | 10 | <DL | - | 15 | 10 | <DL | - |
Mn | 175 | 2 | 25 | 3 | 95 | 2 | 15 | 3 | 160 | 5 | 30 | 10 | 60 | 3 | 50 | 20 |
Fe | 8435 | 1 | 1070 | 3 | 4960 | 1 | 600 | 2 | 13,860 | 5 | 2170 | 10 | 7250 | 5 | 5690 | 40 |
Nmd. Fe ** | 1050 | - | 615 | - | 640 | - | 315 | - | 10,450 | - | 1945 | - | 5885 | - | 5520 | - |
Cu | 255 | 40 | 45 | 110 | 80 | 20 | 40 | 170 | 60 | 20 | 20 | 85 | 30 | 25 | 25 | 185 |
Zn | 195 | 25 | 35 | 70 | 270 | 60 | 20 | 65 | 175 | 45 | 20 | 85 | 185 | 130 | 75 | 445 |
Ba | 295 | 5 | 40 | 10 | 260 | 10 | 10 | 5 | 200 | 10 | <DL | - | 215 | 25 | 255 | 255 |
Pb | 50 | 35 | <DL | - | 25 | 30 | 20 | 320 | <DL | - | <DL | - | <DL | - | 35 | 1155 |
PM *** | 224 | - | 168 | - | 159 | - | 30 | - | 180 | - | 12 | - | 354 | - | 19 | - |
Mineral dust | 83,250 | - | 8120 | - | 51,610 | - | 5345 | - | 55,980 | - | 7330 | - | 15,710 | - | 6235 | - |
Element | Local Bus | EF | Outdoor | EF | I/O | Trolleybus | EF | Outdoor | EF | I/O | Old Tram | EF | Outdoor | EF | I/O | New Tram | EF | Outdoor | EF | I/O | IC Train | EF | Metro | EF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | |||||||||||||||
Al | 18,100 | 0.4 | 300 | 2 | 60 | 2785 | 0.3 | 520 | 1 | 5 | 2470 | 0.3 | 510 | 1 | 5 | 300 | 0.2 | 485 | 1 | 1 | 100 | 0.1 | <DL | - |
Si | 88,200 | 1 | 395 | 1 | 223 | 15,690 | 1 | 1200 | 1 | 13 | 31,690 | 1 | 985 | 1 | 32 | 6665 | 1 | 1350 | 1 | 5 | 1380 | 0.4 | 1830 | 0.3 |
P | 265 | 0.4 | 10 | 3 | 27 | 50 | 0.4 | 10 | 1 | 5 | <DL | - | 5 | 1 | - | <DL | - | 10 | 1 | - | 40 | 3 | 675 | 30 |
S | 2130 | 14 | 60 | 96 | 36 | 715 | 24 | 320 | 176 | 2 | 610 | 25 | 215 | 117 | 3 | 125 | 28 | 365 | 150 | 0.3 | 280 | 95 | <DL | - |
Cl | 4670 | 60 | 15 | 50 | 311 | 850 | 58 | 15 | 17 | 56 | 695 | 58 | 20 | 20 | 35 | 205 | 92 | 15 | 13 | 14 | 160 | 110 | 570 | 225 |
K | 10,200 | 1 | 90 | 1 | 113 | 1945 | 1 | 240 | 1 | 8 | 1850 | 1 | 165 | 1 | 11 | 395 | 1 | 380 | 2 | 1 | 290 | 1 | 460 | 1 |
Ca | 30,400 | 1 | 180 | 2 | 169 | 7520 | 2 | 600 | 2 | 13 | 6795 | 2 | 430 | 2 | 16 | 2255 | 4 | 580 | 2 | 4 | 1010 | 2 | 2385 | 3 |
Ti | 2620 | - | 10 | - | 258 | 495 | - | 30 | - | 17 | 405 | - | 30 | - | 14 | 75 | - | 40 | - | 2 | 50 | - | 85 | - |
V | 65 | 1 | <DL * | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - |
Cr | 115 | 2 | <DL | - | - | <DL | - | <DL | - | - | 65 | 7 | <DL | - | - | <DL | - | <DL | - | - | <DL | - | 120 | 60 |
Mn | 685 | 1 | 5 | 3 | 137 | 100 | 1 | 10 | 2 | 10 | 250 | 3 | 10 | 1 | 25 | 40 | 2 | 15 | 2 | 3 | 70 | 5 | 2020 | 110 |
Fe | 31,600 | 1 | 125 | 1 | 253 | 5740 | 1 | 530 | 2 | 11 | 19,220 | 4 | 415 | 1 | 46 | 2085 | 2 | 600 | 1 | 3 | 9230 | 15 | 207,000 | 215 |
Nmd. Fe ** | 1825 | - | - | - | - | 115 | - | - | - | - | 14,620 | - | - | - | - | 1235 | - | - | - | - | 8660 | - | 206,035 | - |
Cu | 180 | 5 | 2 | 13 | 106 | 120 | 19 | 5 | 15 | 24 | 35 | 7 | 5 | 10 | 7 | <DL | - | 10 | 13 | - | 15 | 25 | 655 | 615 |
Zn | 380 | 9 | 2 | 11 | 223 | 165 | 21 | 5 | 12 | 33 | 85 | 13 | 5 | 8 | 17 | 20 | 17 | 10 | 10 | 2 | 85 | 105 | 45 | 35 |
Br | 35 | 24 | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | 85 | 1760 |
Ba | 960 | 3 | 5 | 4 | 192 | 220 | 4 | 15 | 5 | 15 | 140 | 3 | 10 | 2 | 14 | 35 | 4 | 20 | 4 | 2 | 230 | 40 | 810 | 85 |
Pb | 160 | 21 | 1 | 41 | 130 | 20 | 14 | 10 | 84 | 2 | 65 | 54 | 5 | 34 | 13 | 30 | 135 | 10 | 97 | 3 | <DL | - | 360 | 1435 |
PM *** | no data | - | 6 | - | - | 160 | - | 14 | - | 11 | 248 | - | 13 | - | 19 | 29 | - | 19 | - | 1.5 | 182 | - | 288 | - |
Mineral dust | 327,145 | - | 1985 | - | - | 61,035 | - | 5540 | - | - | 91,950 | - | 4550 | - | - | 19,900 | - | 6075 | - | - | 5865 | - | 9430 | - |
Element | Local Bus | EF | Outdoor | EF | I/O | Trolleybus | EF | Outdoor | EF | I/O | Old Tram | EF | Outdoor | EF | I/O | New Tram | EF | Outdoor | EF | I/O | IC Train | EF | Metro | EF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | (ng m−3) | |||||||||||||||
Al | 1370 | 0.5 | 330 | 2 | 4 | 305 | 1 | 450 | 2 | 0.7 | 615 | 1 | 145 | 1 | 4 | 145 | 1 | 315 | 2 | 0.5 | 455 | 1 | <DL | - |
Si | 5380 | 1 | 180 | 0.4 | 30 | 1030 | 1 | 555 | 1 | 2 | 4140 | 1 | 265 | 0.3 | 16 | 1160 | 1 | 425 | 1 | 3 | 505 | 0.4 | 505 | 0.4 |
P | <DL * | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | 30 | 6 | <DL | - |
S | 580 | 65 | 345 | 765 | 2 | 1240 | 700 | 1185 | 1437 | 1.04 | 1500 | 565 | 1525 | 1821 | 0.9 | 290 | 325 | 445 | 720 | 0.65 | 580 | 490 | 410 | 345 |
Cl | 260 | 55 | 10 | 40 | 26 | 35 | 40 | 5 | 12 | 7 | 65 | 50 | 1 | 2 | 74 | 20 | 45 | 10 | 35 | 2 | 30 | 50 | 230 | 390 |
K | 840 | 1 | 385 | 10 | 2 | 355 | 2 | 445 | 5 | 0.8 | 340 | 1 | 395 | 5 | 0.9 | 220 | 2 | 475 | 8 | 0.5 | 115 | 1 | 95 | 1 |
Ca | 2180 | 2 | 80 | 1 | 27 | 495 | 2 | 225 | 2 | 2 | 685 | 2 | 150 | 1 | 5 | 740 | 6 | 165 | 2 | 4 | 525 | 3 | 390 | 2 |
Ti | 155 | 1 | 10 | - | 16 | 30 | 1 | 15 | - | 2 | 45 | 1 | 15 | - | 3 | 15 | 1 | 10 | - | 1.5 | 20 | 1 | 20 | 1 |
V | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | 15 | 25 | <DL | - |
Cr | <DL | - | <DL | - | - | <DL | - | 1 | 4 | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | 85 | 185 |
Mn | 60 | 1 | 5 | 3 | 11 | 15 | 2 | 5 | 2 | 3 | 45 | 5 | 5 | 2 | 9 | 15 | 5 | 5 | 2 | 3 | 55 | 15 | 1050 | 245 |
Fe | 3030 | 2 | 95 | 1 | 32 | 690 | 2 | 335 | 2 | 2 | 3580 | 7 | 260 | 2 | 14 | 545 | 3 | 300 | 3 | 2 | 6860 | 30 | 10,4700 | 460 |
Nmd. Fe ** | 1270 | - | - | - | - | 350 | - | - | - | - | 3070 | - | - | - | - | 375 | - | - | - | - | 6635 | - | 104,475 | - |
Cu | 90 | 47 | 2 | 25 | 16 | 35 | 93 | 5 | 35 | 7 | 70 | 124 | 5 | 25 | 15 | <DL | - | 5 | 35 | - | 20 | 80 | 210 | 840 |
Zn | 70 | 28 | 25 | 210 | 3 | 35 | 75 | 30 | 136 | 1.15 | 45 | 65 | 35 | 150 | 1.3 | 15 | 65 | 20 | 130 | 0.7 | 80 | 250 | <DL | - |
Br | <DL | - | 2 | 555 | - | <DL | - | 3 | 355 | - | <DL | - | 5 | 530 | - | <DL | - | 2 | 360 | - | <DL | - | <DL | - |
Ba | 90 | 5 | 5 | 7 | 18 | 30 | 10 | 15 | 11 | 2 | <DL | - | 15 | 10 | - | <DL | - | 10 | 8 | - | 295 | 130 | 505 | 220 |
Pb | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | <DL | - | - | <DL | - | 130 | 2200 |
PM *** | 52 | - | 14 | - | 4 | 104 | - | 20 | - | 5 | 145 | - | 23 | - | 6 | 17 | - | 17 | - | 1 | 66 | - | 189 | - |
Mineral dust | 21090 | - | 1790 | - | - | 4990 | - | 3455 | - | - | 12,260 | - | 1980 | - | - | 4360 | - | 2820 | - | - | 3190 | - | 2115 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papp, E.; Angyal, A.; Furu, E.; Szoboszlai, Z.; Török, Z.; Kertész, Z. Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities. Atmosphere 2022, 13, 692. https://doi.org/10.3390/atmos13050692
Papp E, Angyal A, Furu E, Szoboszlai Z, Török Z, Kertész Z. Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities. Atmosphere. 2022; 13(5):692. https://doi.org/10.3390/atmos13050692
Chicago/Turabian StylePapp, Enikő, Anikó Angyal, Enikő Furu, Zoltán Szoboszlai, Zsófia Török, and Zsófia Kertész. 2022. "Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities" Atmosphere 13, no. 5: 692. https://doi.org/10.3390/atmos13050692
APA StylePapp, E., Angyal, A., Furu, E., Szoboszlai, Z., Török, Z., & Kertész, Z. (2022). Case Studies of Aerosol Pollution in Different Public Transport Vehicles in Hungarian Cities. Atmosphere, 13(5), 692. https://doi.org/10.3390/atmos13050692