Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object, Place and Means of Observation
- -
- measurement of the distribution of the number of aerosol particles by size (the number distribution) by aerosol spectrometers, in continuous automatic mode with a time resolution of 5 min;
- -
- daily (for 35–40 days in each season) sampling for analytical aerosol filters using an aspiration sampler for gravimetric and elemental analysis of the samples obtained;
- -
- seasonal sampling by a 6-cascade impactor to determine sized distributions of mass concentration and elemental composition of aerosols.
2.2. The Methods to Studying Aerosols
3. Results and Discussion
3.1. Episodes of High Atmosphere Aerosol Pollution, Background Conditions, Seasonal Variations
3.2. Meteorological Conditions
3.3. Spring Episodes of Maximum Air Pollution Due to Atmospheric Transport of Biomass Burning Aerosols from the Regions with Biomass Fires to Moscow
3.4. Episodes of Maximal Air Pollution during Atmospheric Transport of Dust and Sand to Moscow from the Regions with Dust Storms
3.5. Extreme Air Pollution under the Influence of the Local Anthropogenic Source
3.6. Elemental Composition of Near-Surface Aerosol during the Periods of High Atmospheric Aerosol Pollution in Moscow
4. Conclusions
- -
- regional transport of aerosols from the areas with numerous biomass fires in the spring;
- -
- long-range transport of dust aerosol from arid areas of the south of ETR with intense dust and sand storms;
- -
- mixed transport of fire and dust aerosols from the areas with fires and dust sources under certain weather conditions;
- -
- local powerful anthropogenic source of anthropogenic dust (for example, the process of demolition of industrial buildings).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; de Fatima Andrade, M.; Zavala, M. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ. Intern. 2021, 157, 106818. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2006; p. 1248. [Google Scholar]
- AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2015; 116p, ISBN 9788279710929.
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Cess, R.; Potter, G.; Ghan, S.; Gates, W.L. The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one- and three-dimensional climate models. J. Geophysical. Res. 1980, 90, 12937–12950. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Langmann, B.; Duncan, B.; Textor, C.; Trentmann, J.; van der Werf, G.R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 2009, 43, 107–116. [Google Scholar] [CrossRef]
- Reid, J.; Koppmann, R. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K. Transport of mineral dust and its impact on climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Chaibou, S.; Ma, A.; Sha, T. Dust radiative forcing and its impact on surface energy budget over West Africa. Sci. Rep. 2020, 10, 12236. [Google Scholar] [CrossRef] [PubMed]
- Budyko, M.; Golitsyn, G.; Izrael, Y. Global Climatic Catastrophes; Springer: New York, NY, USA, 1988. [Google Scholar]
- Xiong, J.; Zhao, T.; Bai, Y.; Liu, Y.; Han, Y.; Guo, C. Climate characteristics of dust aerosol and its transport in major global dust source regions. J. Atmos. Sol.-Terr. Phys. 2020, 209, 105415. [Google Scholar] [CrossRef]
- Targino, A.C.; Krecl, P.; Johansson, C.; Swietlicki, E.; Massling, A.; Coraiola, G.C.; Lihavainen, H. Deterioration of air quality across Sweden due to transboundary agricultural burning emissions. Boreal. Environ. Res. 2013, 18, 19–36. [Google Scholar]
- Bergin, M.S.; West, J.J.J.; Keating, T.J.; Russell, A.G. Regional Atmospheric Pollution and Transboundary Air Quality Management. Annu. Rev. Environ. Resour. 2005, 30, 1–37. [Google Scholar] [CrossRef]
- Heilman, W.E.; Liu, Y.; Urbanski, S.; Kovalev, V.; Mickler, R. Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport, and chemistry processes. For. Ecol. Manag. 2014, 317, 70–79. [Google Scholar] [CrossRef]
- Hernandez, A.J.; Morales-Rincon, L.A.; Wu, D.; Mallia, D.; Lin, J.C.; Jimenez, R. Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmos. Environ. 2019, 205, 1–8. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Kopeikin, V.M.; Sitnov, S.A.; Semoutnikova, E.G.; Sviridenkov, M.A.; Karpov, A.V.; Lezina, E.A.; Emilenko, A.S.; Isakov, A.A.; Kuznetsov, G.A.; et al. Moscow smoke haze in October 2014. Variations in the aerosol mass concentration. Atmos. Ocean. Opt. 2016, 29, 5–11. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Karpov, A.V.; Kuznetsov, G.A.; Semoutnikova, E.G. Moscow smoke haze in October 2014: Variations in gaseous air pollutants. Atmos. Ocean. Opt. 2017, 30, 542–549. [Google Scholar] [CrossRef]
- Popovicheva, O.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kistler, M.; Kasper-Giebl, A.; Kopeikin, V. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow. Atmos. Environ. 2014, 96, 405–414. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Kireeva, E.D.; Persiantseva, N.M.; Timofeev, M.A.; Kistler, M.; Shoniya, N.K.; Kopeikin, V.M. Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires. Izv. Atmos. Ocean. Phys. 2017, 53, 49–57. [Google Scholar] [CrossRef]
- Kopeikin, V.M.; Golitsyn, G.S.; Gengchen, W.; Pucai, W.; Ponomareva, T.Y. Variations in soot concentrations in megacities of Beijing and Moscow. Atmos. Ocean. Opt. 2019, 32, 540–544. [Google Scholar] [CrossRef]
- Kopeikin, V.M.; Emilenko, A.S.; Isakov, A.A.; Loskutova, O.V.; Ponomareva, T.Y. Variability of soot and fine aerosol in the Moscow region in 2014–2016. Atmos. Ocean. Opt. 2018, 31, 243–249. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Gorchakov, G.I.; Sviridenkov, M.A.; Karpov, A.V. Evolution and radiation effects of the extreme smoke pollution over the European part of Russia in the summer of 2010. Dokl. Earth Sci. 2012, 446, 1197–1203. [Google Scholar] [CrossRef]
- Popovicheva, O.; Padoan, S.; Schnelle- Kreis, J.; Nguyen, D.L.; Adam, T.; Kistler, M.; Steinkogler, T.; Kasper-Giebl, A.; Zimmermann, R.; Chubarova, N. Spring Aerosol in Urban Atmosphere of Megacity: Analytical and Statistical Assessment for Source Impacts. Aerosol. Air Qual. Res. 2020, 20, 702–719. [Google Scholar] [CrossRef]
- Trefilova, A.V.; Artamonova, M.S.; Kuderina, T.M.; Gubanova, D.P.; Davydov, K.A.; Iordanskii, M.A.; Grechko, E.I.; Minashkin, V.M. Chemical composition and microphysical characteristics of atmospheric aerosol over Moscow and its vicinity in June 2009 and during the fire peak of 2010. Izv. Atmos. Ocean. Phys. 2013, 49, 765–778. [Google Scholar] [CrossRef]
- Gubanova, D.P.; Vinogradova, A.A.; Iordanskii, M.A.; Skorokhod, A.I. Time Variations in the Composition of Atmospheric Aerosol in Moscow in Spring 2020. Izv. Atmos. Ocean. Phys. 2021, 57, 297–309. [Google Scholar] [CrossRef]
- Kuznetsova, I.N. The effect of meteorology on air pollution in Moscow during the Summer episodes of 2010. Izv. Atmos. Ocean. Phys. 2012, 48, 504–515. [Google Scholar] [CrossRef]
- Gorchakova, I.A.; Mokhov, I.I.; Rublev, A.N. Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere. Izv. Atmos. Ocean. Phys. 2015, 51, 113–126. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Sitnov, S.A.; Karpov, A.V.; Gorchakova, I.A.; Gushchin, R.A.; Datsenko, O.I. Large-scale hazes over Eurasia in July 2016: Siberian smoke haze evolution. IOP Conf. Ser. Earth Environ. Sci. 2019, 231, 012019. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Sitnov, S.A.; Semoutnikova, E.G.; Kopeikin, V.M.; Karpov, A.V.; Gorchakova, I.A.; Pankratova, N.V.; Ponomareva, T.Y.; Kuznetsov, G.A.; Loskutova, O.V.; et al. Large-scale smoke haze over the European part of Russia and Belorus in July 2016. Izv. Atmos. Ocean. Phys. 2018, 54, 986–996. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Long-range Transboundary Atmospheric Transport of Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-soluble Ionic Species in Southern Thailand. Aerosol. Air Qual. Res. 2020, 20, 1591–1606. [Google Scholar] [CrossRef]
- Hodshire, A.L.; Akherati, A.; Alvarado, M.J.; Brown-Steiner, B.; Jathar, S.H.; Jimenez, J.L.; Kreidenweis, S.M.; Lonsdale, C.R.; Onasch, T.B.; Ortega, A.M.; et al. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environ. Sci. Technol. 2019, 53, 10007–10022. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Takami, A.; Ishida, T.; Taniguchi, Y.; Hasegawa, S.; Chan, C.K.; Kim, Y.P.; Lin, N.H.; Hatakeyama, S. Long-term Measurements of Carbonaceous Aerosol at Cape Hedo, Okinawa, Japan: Effects of Changes in Emissions in East Asia. Aerosol. Air Qual. Res. 2021, 21, 200505. [Google Scholar] [CrossRef]
- Das, S.; Colarco, P.R.; Oman, L.D.; Taha, G.; Torres, O. The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere. Atmos. Chem. Phys. 2021, 21, 12069–12090. [Google Scholar] [CrossRef]
- Duc, H.N.; Chang, L.T.-C.; Azzi, M.; Jiang, N. Smoke aerosols dispersion and transport from the 2013 New South Wales (Australia) bushfires. Environ. Monit. Assess 2018, 190, 428. [Google Scholar] [CrossRef]
- Noda, J.; Bergström, R.; Kong, X.; Gustafsson, T.L.; Kovacevik, B.; Svane, M.; Pettersson, J.B.C. Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History. Atmosphere 2019, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.D.; Hallak, R.; Alves, R.C.; de Almeida, D.S.; Squizzato, R.; Moreira, C.A.; Beal, A.; da Silva, I.; Rudke, A.; Martins, J.A. Long-range Transport of Aerosols from Biomass Burning over Southeastern South America and their Implications on Air Quality. Aerosol. Air Qual. Res. 2018, 18, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C.; Freitas, S.R.; Cardozo, F.S.; Longo, K.M. Monitoring the transport of biomass burning emission in South America. Atmos. Pollut. Res. 2011, 2, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Ulke, A.G. Influence of Regional Transport Mechanisms on the Fingerprint of Biomass-Burning Aerosols in Buenos Aires. Hindawi Adv. Meteorol. 2019, 2019, 6792161. [Google Scholar] [CrossRef] [Green Version]
- Duc, H.N.; Bang, H.Q.; Quang, N.X. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environ Monit. Assess 2016, 188, 106. [Google Scholar] [CrossRef]
- Marelle, L.; Raut, J.-C.; Thomas, J.L.; Law, K.S.; Quennehen, B.; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, J.D. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008. Atmos. Chem. Phys. 2015, 15, 3831–3850. [Google Scholar] [CrossRef] [Green Version]
- Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: Analysis of multiple lidar observations in the western Mediterranean basin. Atmos. Chem. Phys. 2016, 16, 4725–4742. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Harshvardhan, H.; Huisheng, B.; Chin, M.; Curci, G.; Protonotariou, A.P.; Mielonen, T.; Zhang, K.; Wang, H.; Liu, X. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. JGR Atmos. 2017, 122, 6391–6415. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophysics. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Prospero, J. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA 1999, 96, 3396–3403. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A.G.; Landulfo, E.; Montilla-Rosero, E.; Lopes, F.J.; Hoelzemann, J.J.; Fernandez, J.H.; Silva, M.P.A.; Santos, R.S.S.; Guerrero-Rascado, J.L.; Alados-Arboledas, L. Detection of Saharan mineral dust aerosol transport over Brazilian northeast through a depolarization lidar. EPJ Web Conf. 2018, 176, 05036. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, B.; Ansmann, A.; Prospero, J.M.; Althausen, D.; Benker, N.; Chouza, F.; Dollner, M.; Farrell, D.; Fomba, W.K.; Freudenthaler, V.; et al. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights. Bull. Am. Meteorol. Soc. 2017, 98, 1427–1451. [Google Scholar] [CrossRef] [Green Version]
- van der Does, M.; Knippertz, P.; Zschenderlein, P.; Harrison, R.G.; Stuut, J.-B.W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 2018, 4, eaau2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, E.C.; Christensen, J.N.; Post, A.; Perry, K.; Cliff, S.S.; Zhao, Y.; Trousdell, J.; Faloona, I. The transport of Asian dust and combustion aerosols and associated ozone to North America as observed from a mountain top monitoring site in the California coast range. JGR Atmos. 2018, 123, 4890–4909. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chin, M.; Bian, H.; Yuan, T.; Prospero, J.; Omar, A.H.; Remer, L.A.; Winker, D.M.; Yang, Y.; Zhang, Y.; et al. Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens. Environ. 2015, 159, 232–249. [Google Scholar] [CrossRef]
- Conceição, R.; Silva, H.G.; Mirao, J.; Gostein, M.; Fialho, L.; Narvarte, L.; Collares-Pereira, M. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal. Sol. Energy 2018, 160, 94–102. [Google Scholar] [CrossRef]
- Israelevich, P.L.; Ganor, E.; Alpert, P.; Kishcha, P.; Stupp, A. Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. JGR Atmos. 2012, 117, 2205. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Peña, L.; Lorente-Plazas, R.; Montávez, J.P.; Jiménez-Guerrero, P. Saharan Dust Modeling Over the Mediterranean Basin and Central Europe: Does the Resolution Matter? Front. Earth Sci. 2019, 7, 290. [Google Scholar] [CrossRef]
- Salvador, P.; Artinano, B.; Molero, F.; Viana, M.; Pey, J.; Alastuey, A.; Querol, X. African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. Atmos. Res. 2013, 127, 117–129. [Google Scholar] [CrossRef]
- Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016, 16, 8609–8642. [Google Scholar] [CrossRef] [Green Version]
- Meloni, D.; di Sarra, A.; Biavati, G.; DeLuisi, J.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D. Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos. Environ. 2007, 41, 3041–3056. [Google Scholar] [CrossRef]
- Guerzoni, S.; Molinaroli, E.; Chester, R. Saharan dust inputs to the western Mediterranean Sea: Depositional patterns, geochemistry and sedimentological implications. Deep Sea Res. 1997, 44, 631–654. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Jin, Q.; Ma, Y.; Yang, B. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.; Rao, S.V.B.; Jayasankar, C. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data. Aeolian Res. 2016, 21, 75–85. [Google Scholar] [CrossRef]
- Yang, L.; Shi, Z.; Sun, H.; Xie, X.; Liu, X.; An, Z. Distinct effects of winter monsoon and westerly circulation on dust aerosol transport over East Asia. Theor. Appl. Climatol. 2021, 144, 1031–1042. [Google Scholar] [CrossRef]
- Kondratyev, I.; Kachur, A.; Yurchenko, S.; Mezentseva, L.I.; Roschupkin, G.T.; Semykina, G.I. Synoptic and geochemical aspects of abnormal dust transfer in south Primorskii krai. Vestn. Far East Branch Russ. Acad. Sci. 2005, 3, 55–65. (In Russian) [Google Scholar]
- Abdullaev, S.F.; Maslov, V.A.; Nazarov, B.I.; Madvaliev, U.; Davlatshoev, T. The elemental composition of soils and dust aerosol in the south-central part of Tajikistan. Atmos. Ocean. Opt. 2015, 28, 347–358. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Hayasaka, T.; Wang, S.; Zhou, T.; Jin, H. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef] [Green Version]
- Gubanova, D.P.; Vinogradova, A.A.; Skorokhod, A.A.; Iordanskii, M.A. Abnormal aerosol air pollution in Moscow near the local anthropogenic source in July 2021. Hydrometeorol. Res. Forecast. 2021, 4, 133–147. Available online: http://method.meteorf.ru/publ/tr/tr382/htm/08.htm (accessed on 27 February 2022). (In Russian). [CrossRef]
- Shukurov, K.; Shukurova, L. Aral’s potential sources of dust for Moscow region. E3S Web Conf. 2019, 99, 02015. [Google Scholar] [CrossRef]
- Shukurov, K.; Shukurova, L. Source regions of ammonium nitrate, ammonium sulfate, and natural silicates in the surface aerosols of Moscow oblast. Izv. Atmos. Ocean. Phys. 2017, 53, 316–325. [Google Scholar] [CrossRef]
- Shukurov, K.; Chkhetiani, O. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region. Proc. SPIE 2017, 10466, 104663V. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A.; Elansky, N.F.; Trifanova, A.V.; Belikov, I.B.; Skorokhod, A.I. About extreme levels of air pollution in Moscow. Vestn. Mosk. Universiteta. Seriya 5 Geogr. 2016, 4, 29–39. (In Russian) [Google Scholar]
- Air Pollution in Moscow. Available online: https://sud-expertiza.ru/zagryaznenie-vozduha-v-moskve/ (accessed on 27 February 2022).
- Mosecomonitoring. Air Quality in Moscow. Available online: https://mosecom.mos.ru/air-quality/ (accessed on 27 February 2022).
- Kulbachevsky, A.O. Report “On the State of the Environment in the City of Moscow in 2010; NIiPI IGSP: Moscow, Russia, 2011; 135p, Available online: https://mosecom.mos.ru/wp-content/uploads/2018/02/report2010.pdf (accessed on 27 February 2022). (In Russian)
- AFA Filters. Available online: https://eng.fgsiz.ru/product/product/index/product_id/143/?path=75 (accessed on 27 February 2022).
- Karandashev, V.K.; Turanov, A.N.; Orlova, T.A.; Lezhnev, A.E.; Nosenko, S.V.; Zolotareva, N.I.; Moskvina, I.R. Use of mass spectrometry with inductively coupled plasma method for element analysis of surrounding medium objects. Ind. Laboratory. Diagn. Mater. 2007, 73, 12–22. (In Russian) [Google Scholar]
- Kudryashov, V.I. Analysis of the elemental composition atmospheric aerosols by physical methods. In Problemy Fiziki Atmosfery: Mezhvuzovskii Sbornik (Problems of Atmospheric Physics: Interuniversity Transactions); SPbGU Publ.: Saint-Petersburg, Russia, 1997; pp. 97–130. (In Russian) [Google Scholar]
- Erhardt, H. Rentgenofluorescentnyj Analiz. Primenenie v Zavodskih Laboratorijah; Metallurgija Publ.: Moscow, Russia, 1985; 254p. (In Russian) [Google Scholar]
- Windy. Available online: https://www.windy.com/ru (accessed on 20 February 2022).
- Reliable Prognosis. Available online: https://rp5.ru (accessed on 16 December 2021).
- Weatherarchive. Available online: http://weatherarchive.ru/Pogoda/Moscow (accessed on 12 January 2022).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- NOAA Air Resources Laboratory. Available online: www.arl.noaa.gov (accessed on 11 February 2022).
- SCANEX Fire Map. Available online: https://fires.ru/ (accessed on 3 November 2021).
- NASA Fire Information for Resource Management System (FIRMS). Available online: https://firms.modaps.eosdis.nasa.gov (accessed on 11 November 2021).
- MERRA-2. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 15 February 2022).
- Mosecomonitoring. Available online: https://mosecom.mos.ru (accessed on 17 February 2022).
- Gubanova, D.P.; Elansky, N.F.; I Skorokhod, A.; Kuderina, T.M.; A Iordansky, M.; Sadovskaya, N.V.; Anikin, P.P. Physical and chemical properties of atmospheric aerosols in Moscow and its suburb for climate assessments. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012019. [Google Scholar] [CrossRef]
- Gubanova, D.P.; Iordanskii, M.A.; Kuderina, T.M.; Skorokhod, A.I.; Elansky, N.F.; Minashkin, V.M. Elemental Composition of Aerosols in the Ground Air of Moscow: Seasonal Changes in 2019 and 2020. Atmos. Ocean. Opt. 2021, 34, 475–482. [Google Scholar] [CrossRef]
- World Health Organization. Occupational and Environmental Health Team. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006; Available online: https://apps.who.int/iris/handle/10665/69477 (accessed on 27 February 2022).
- Vinogradova, A.A.; Gubanova, D.P.; Iordanskii, M.A.; Skorokhod, A.I. The influence of meteorological conditions and long-range air mass transport on the composition of near-surface aerosol in Moscow during the winter seasons. Atmos. Ocean. Opt. 2022; submitted. [Google Scholar]
- Kuznetsova, I.N.; Glazkova, A.A.; Shalygina, I.Y.; Nakhaev, M.I.; Arkhangel’skaya, A.A.; Zvyagintsev, A.M.; Semutnikova, E.G.; Zakharova, P.V.; Lezina, E.A. Seasonal and diurnal variability of particulate matter PM10 in surface air of Moscow habitable districts. Atmos. Ocean. Opt. 2014, 6, 473–482. [Google Scholar]
- Gubanova, D.P.; Belikov, I.B.; Elansky, N.F.; Skorokhod, A.I.; Chubarova, N.E. Variations in PM2.5 surface concentration in Moscow according to observations at MSU meteorological observatory. Atmos. Ocean. Opt. 2018, 31, 290–299. [Google Scholar] [CrossRef]
- Ivlev, L.S. Khimicheskii Sostav i Struktura Atmosfernykh Aerozolei (Chemical Composition and Structure of Atmospheric Aerosols); Leningrad State University: Leningrad, Russia, 1982. (In Russian) [Google Scholar]
- Chkhetiani, O.G.; Vazaeva, N.V.; Chernokulsky, A.V.; Shukurov, K.A.; Gubanova, D.P.; Artamonova, M.S.; Maksimenkov, L.O.; Kozlov, F.A.; Kuderina, T.M. Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. Atmosphere 2021, 12, 985. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Malkov, I.P.; Polissar, A.V.; Khramov, N.N. Elemental composition of surface atmospheric aerosol in the Russian Arctic region. Izv. Akad. Nauk Fiz. Atmos. Okeana. 1993, 29, 164–172. [Google Scholar]
- Bortnikov, V.Y.; Bukatyi, V.I.; Ryabinin, I.V.; Semenov, G.A. Microphysical parameters and elemental composition of atmospheric aerosol in the town of Barnaul in 2006–2008. Izv. Altai. Gos. Univ. 2009, 61, 106–110. (In Russian) [Google Scholar]
- Lukashin, V.N.; Novigatsky, A.N. Chemical composition of aerosols in the near-water surface atmospheric layer of the Central Caspian Sea in the winter and autumn of 2005. Oceanology 2013, 53, 727–738. [Google Scholar] [CrossRef]
- Smolík, J.; Ždímal, V.; Schwarz, J.; Lazaridis, M.; Havárnek, V.; Eleftheriadis, K.; Mihalopoulos, N.; Bryant, C.; Colbeck, I. Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area. Atmos. Chem. Phys. 2003, 3, 2207–2216. [Google Scholar] [CrossRef] [Green Version]
- Bergbäck, B.; Johansson, K.; Mohlander, U. Urban metal flows–A case study of Stockholm. Review and Conclusions. Water Air Soil Pollut. Focus 2001, 1, 3–24. [Google Scholar] [CrossRef]
- Samek, L.; Turek-Fijak, A.; Skiba, A.; Furman, P.; Styszko, K.; Furman, L.; Stegowski, Z. Complex Characterization of Fine Fraction and Source Contribution to PM2.5 Mass at an Urban Area in Central Europe. Atmosphere 2020, 11, 1085. [Google Scholar] [CrossRef]
- Varrica, D.; Dongarrà, G.; Sabatino, G.; Monna, F. Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ. Geol. 2003, 44, 222–230. [Google Scholar] [CrossRef]
- Theodosi, C.; Tsagkaraki, M.; Zarmpas, P.; Grivas, G.; Liakakou, E.; Paraskevopoulou, D.; Lianou, M.; Gerasopoulos, E.; Mihalopoulos, N. Multi-year chemical composition of the fine-aerosol fraction in Athens, Greece, with emphasis on the contribution of residential heating in wintertime. Atmos. Chem. Phys. 2018, 18, 14371–14391. [Google Scholar] [CrossRef] [Green Version]
- Gebre, G.; Feleke, Z.; Sahle-Demissie, E. Mass concentrations and elemental composition of urban atmospheric aerosols in Addis Ababa, Ethiopia. Bull. Chem. Soc. Ethiop. 2010, 24, 361–373. [Google Scholar] [CrossRef]
- Offor, I.F.; Adie, G.U.; Ana, G.R. Review of Particulate Matter and Elemental Composition of Aerosols at Selected Locations in Nigeria from 1985-2015. J. Health Pollut. 2016, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Klopper, D.; Formenti, P.; Namwoonde, A.; Cazaunau, M.; Chevaillier, S.; Feron, A.; Gaimoz, C.; Hease, P.; Lahmidi, F.; Mirande-Bret, C.; et al. Chemical composition and source apportionment of atmospheric aerosols on the Namibian coast. Atmos. Chem. Phys. 2020, 20, 15811–15833. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Gursumeeran, P.S.; Masiha, J.; Taneja, A. Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 2009, 407, 6196–6204. [Google Scholar] [CrossRef] [PubMed]
- Atar Singh Pipal, A.S.; Jan, R.; Satsangi, P.G.; Tiwari, S.; Taneja, A. Study of Surface Morphology, Elemental Composition and Origin of Atmospheric Aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual. Res. 2014, 14, 1685–1700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Han, Z.; Shen, Z.; Cao, J. Continuous measurement of number concentrations and elemental composition of aerosol particles for a dust storm event in Beijing. Adv. Atmos. Sci. 2008, 25, 89–95. [Google Scholar] [CrossRef]
- Volokh, A.A.; Zhuravleva, M.G. Assessment of anthropogenic air pollution in Moscow. Izv. Akad. Nauk Fiz. Atmos. Okeana. 1994, 30, 182–188. [Google Scholar]
- Ogorodnikov, B.I.; Budyka, A.K.; Skitovich, V.I.; Brodovoi, A.V. Characteristics of aerosols in the boundary layer of the atmosphere over Moscow. Izv. Atmos. Ocean. Phys. 1996, 32, 149–157. [Google Scholar]
- Pacyna, J.M. Source inventories for atmospheric trace metals. In Atmospheric Particles; Harrison, R.M., Van Grieken, R., Eds.; Wiley: Chichester, UK, 1998; pp. 385–423. [Google Scholar]
- Milford, J.B.; Davidson, C.I. The sizes of particulate trace elements in the atmosphere–A review. J. Air Pollut. Control. Assoc. 1985, 35, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.V. Ecological Geochemistry of Elements. In Major P-Elements; Nedra: Moscow, Russia, 1994; 303p. (In Russian) [Google Scholar]
- Perel’man, A.I.; Kasimov, N.S. Landscape Geochemistry; Astreya-2000: Moscow, Russia, 1999; 610p. (In Russian) [Google Scholar]
- Kasimov, N.S. Landscape Ecogeochemistry; Filimonov, M.V.: Moscow, Russia, 2013; 208p. (In Russian) [Google Scholar]
- Dobrovol’skii, V.V. Biogeokhimiya Mirovoi Sushi (Biogeochemistry of World Land); Nauch. Mir: Moscow, Russia, 2009; 440p. (In Russian) [Google Scholar]
- SanPiN 1.2.3685-21. Hygienic Standards and Requirements for Ensuring Safety and (or) Harmlessness to Humans from Environmental Factors. Available online: https://tk-expert.ru/uploads/files/ntd/ntd-861-20210304-191207.pdf (accessed on 27 February 2022). (In Russian).
Episode | Period | PM10 (Max), µg/m3 | PM10 (Background), µg/m3 | ||
---|---|---|---|---|---|
IAP | Spir, MEM | Sukhar, MEM | IAP | ||
1 | 27–29 March 2020 | 118 | 82 | 178 | 13 |
2 | 10–14 October 2020 | 290 | 141 | 137 | 19 |
3 | 17–19 March 2021 | 90 | 109 | 138 | 13 |
4 | 11–15 April 2021 | 237 | 120 | 87 | 25 |
5 | 17–19 May 2021 | 119 | 68 | 55 | 28 |
6 | 14–23 July 2021 | 305 | 34 | 38 | 37 |
Season | Period | PM10, µg/m3 | T, °C | P, hPa | U, % |
---|---|---|---|---|---|
Spring 2020 | March–May | 23 ± 17 | 6.9 | 997 | 62 |
IntObs (25 March–3 May 2020) | 23 ± 23 | 6.1 | 997 | 54 | |
Episode No. 1 (27–29 March 2020) | 90 ± 28 | 9.5 | 1010 | 36 | |
BG conditions | 18 ± 11 | 5.8 | 996 | 56 | |
Long-term average meteo-data for March 2007–2019 | – | −0.4 | 998 | 69 | |
Autumn 2020 | September–November | 39 ± 43 | 9.0 | 1005 | 72 |
IntObs (1 October–10 November 2020) | 53 ± 58 | 9.2 | 1004 | 71 | |
Episode No. 2 (10–14 October 2020) | 128 ± 73 | 13.5 | 1008 | 59 | |
BG conditions | 29 ± 20 | 7.8 | 1004 | 75 | |
Long-term average meteo-data for October 2007–2019 | – | 7.1 | 1002 | 76 | |
Spring 2021 | March–May | 32 ± 34 | 6.9 | 998 | 62 |
IntObs (25 March–5 May 2020) | 40 ± 43 | 7.3 | 998 | 61 | |
Episode No. 4 (11–15 April 2021) | 156 ± 59 | 13.3 | 1005 | 44 | |
BG conditions | 28 ± 13 | 6.7 | 998 | 63 | |
Long-term average meteo-data for April 2007–2019 | – | 7.1 | 1000 | 60 | |
Summer 2021 | July 2021 | 70 ± 67 | 24.1 | 998 | 51 |
Episode No. 6 (14–23 July 2021) | 154 ± 70 | 24.5 | 996 | 53 | |
18 July 2021 without local source | 37 | 26.2 | 994 | 56 | |
BG conditions | 36 ± 10 | 23.9 | 1001 | 50 | |
Long-term average meteo-data for July 2007–2019 | – | 21.9 | 997 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubanova, D.P.; Vinogradova, A.A.; Iordanskii, M.A.; Skorokhod, A.I. Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis. Atmosphere 2022, 13, 574. https://doi.org/10.3390/atmos13040574
Gubanova DP, Vinogradova AA, Iordanskii MA, Skorokhod AI. Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis. Atmosphere. 2022; 13(4):574. https://doi.org/10.3390/atmos13040574
Chicago/Turabian StyleGubanova, Dina Petrovna, Anna Aleksandrovna Vinogradova, Mikhail Alekseevich Iordanskii, and Andrey Ivanovich Skorokhod. 2022. "Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis" Atmosphere 13, no. 4: 574. https://doi.org/10.3390/atmos13040574
APA StyleGubanova, D. P., Vinogradova, A. A., Iordanskii, M. A., & Skorokhod, A. I. (2022). Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis. Atmosphere, 13(4), 574. https://doi.org/10.3390/atmos13040574