Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studies Area
2.2. Sampling
2.3. Analysis
2.4. Data Analysis
3. Results and Discussion
Brief Characteristics of Key Elements Reported to the UNECE ICP Vegetation Programme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahapatra, B.; Dhal, N.K.; Dash, A.K.; Panda, B.P.; Panigrahi, K.C.S.; Pradhan, A. Perspective of mitigating atmospheric heavy metal pollution: Using mosses as biomonitoring and indicator organism. Environ. Sci. Pollut. Res. 2019, 26, 29620–29638. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Omar Chaligava and Participants of the Moss Survey. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond. In Report of the ICP Vegetation Moss SurveyCoordination Centre; Joint Institute for Nuclear Research: Dubna, Russia, 2020. [Google Scholar]
- Qarri, F.; Lazo, P.; Allajbeu, S.; Bekteshi, L.; Kane, S.; Stafilov, T. The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition. Arch. Environ. Contam. Toxicol. 2019, 76, 554–571. [Google Scholar] [CrossRef]
- Evstafeva, E.V.; Bogdanova, A.M.; Bolshunova, T.S.; Baranovskaya, N.V.; Osipova, N.A. Mercury content in the epiphytic lichens of Crimea republic. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2019, 330, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Butyrskaya, I.; Erokin, S.; Erokina, A. The assessment of the sanitary state of atmospheric air of the republic of Crimea. Colloquium-J. 2019, 11, 17–20. [Google Scholar]
- Bulgariu, L.; Bezberdaya, L.; Kosheleva, N.; Chernitsova, O.; Lychagin, M.; Kasimov, N. Pollution Level, Partition and Spatial Distribution of Benzo(a)pyrene in Urban Soils, Road Dust and Their PM10 Fraction of Health-Resorts (Alushta, Yalta) and Industrial (Sebastopol) Cities of Crimea. Water 2022, 14, 561. [Google Scholar] [CrossRef]
- Gorbunov, R.; Gorbunova, T.; Kononova, N.; Priymak, A.; Salnikov, A.; Drygval, A.; Lebedev, Y. Spatiotemporal aspects of interannual changes precipitation in the Crimea. J. Arid Environ. 2020, 183, 104280. [Google Scholar] [CrossRef]
- Cordova, C.E.; Rybak, A.R.; Lehman, P.H. Vegetation Patterns and Conservation Issues in Southern Crimea. Post-Sov. Geogr. Econ. 2013, 42, 362–385. [Google Scholar] [CrossRef]
- Harmens, H.; Mills, G.; Hayes, F.; Sharps, K.; Frontasyeva, M. The Participants of the ICP Vegetation. In Air Pollution and Vegetation: ICP Vegetation Annual Report 2014/2015; NERC/Centre for Ecology & Hydrology: Bangor, UK, 2015; p. 35. [Google Scholar]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Nekhoroshkov, P.; Grozdov, D. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics 2022, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Frontasyeva, M. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey Monitoring Manual; Joint Institute for Nuclear Research: Dubna, Russia, 2015. [Google Scholar]
- Pavlov, D.F.; Bezuidenhout, J.; Frontasyeva, M.V.; Goryainova, Z.I. Differences in Trace Element Content between Non-Indigenous Farmed and Invasive Bivalve Mollusks of the South African Coast. Am. J. Anal. Chem. 2015, 6, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Dmitriev, A.Y.; Pavlov, S.S. Automation of the quantitative determination of elemental content in samples using neutron activation analysis on the IBR-2 reactor at the frank laboratory for neutron physics, joint institute for nuclear research. Phys. Part Nucl. Lett. 2013, 10, 33–36. [Google Scholar] [CrossRef]
- Carballeira, A.; Couto, J.A.; Fernández, J.A. Estimation of Background Levels of Various Elements in Terrestrial Mosses from Galicia (NW Spain). Water Air Soil Pollut. 2002, 133, 235–252. [Google Scholar] [CrossRef]
- Fernández, J.A.; Carballeira, A. Evaluation of Contamination, by Different Elements, in Terrestrial Mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, R.L. Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2003; ISBN 0-08-043751-6. [Google Scholar]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, M. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond. In The ICP Vegetation Reports to the Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution; Joint Institute for Nuclear Research: Dubna, Russia, 2020. [Google Scholar]
- Zhu, Y.; Li, W.; Wang, Y.; Zhang, J.; Liu, L.; Xu, L.; Xu, J.; Shi, J.; Shao, L.; Fu, P.; et al. Sources and processes of iron aerosols in a megacity in Eastern China. Atmos. Chem. Phys. 2022, 22, 2191–2202. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis: Abingdon, UK, 2015; p. 468. [Google Scholar] [CrossRef]
- Sorrentino, M.C.; Wuyts, K.; Joosen, S.; Mubiana, V.K.; Giordano, S.; Samson, R.; Capozzi, F.; Spagnuolo, V. Multi-elemental profile and enviromagnetic analysis of moss transplants exposed indoors and outdoors in Italy and Belgium. Environ. Pollut. 2021, 289, 117871. [Google Scholar] [CrossRef] [PubMed]
- Chaligava, O.; Shetekauri, S.; Badawy, W.M.; Frontasyeva, M.V.; Zinicovscaia, I.; Shetekauri, T.; Kvlividze, A.; Vergel, K.; Yushin, N. Characterization of Trace Elements in Atmospheric Deposition Studied by Moss Biomonitoring in Georgia. Arch. Environ. Contam. Toxicol. 2020, 80, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis: Milton Park, GA, USA, 2010; pp. 1–520. [Google Scholar] [CrossRef]
- Lazo, P.; Stafilov, T.; Qarri, F.; Allajbeu, S.; Bekteshi, L.; Frontasyeva, M.; Harmens, H. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol. Indic. 2019, 101, 1007–1017. [Google Scholar] [CrossRef]
- Gombert, S.; Traubenberg, C.R.; Losno, R.; Leblond, S.; Colin, J.L.; Cossa, D. Biomonitoring of Element Deposition Using Mosses in the 2000 French Survey: Identifying Sources and Spatial Trends. J. Atmos. Chem. 2004, 49, 479–502. [Google Scholar] [CrossRef]
- Allajbeu, S.; Yushin, N.S.; Qarri, F.; Duliu, O.G.; Lazo, P.; Frontasyeva, M.V. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology. Environ. Sci. Pollut. Res. 2016, 23, 14087–14101. [Google Scholar] [CrossRef]
- Barandovski, L.; Frontasyeva, M.V.; Stafilov, T.; Šajn, R.; Ostrovnaya, T.M. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ. Sci. Pollut. Res. 2015, 22, 16077–16097. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture--status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Batukaev, A.; Levchenko, S.; Ostroukhova, E.; Boyko, V.; Peskova, I.; Probeigolova, P.; Belash, D.; Lutkova, N. The effect of foliar fertilizing on ecological optimization of the application of fungicides on the productivity and phenolic complex composition of grapes. In BIO Web Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 15, p. 01012. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; Taylor & Francis: Milton Park, GA, USA, 2000. [Google Scholar] [CrossRef]
- Kilic, O.; Belivermis, M.; Sikdokur, E.; Sezer, N.; Erenturk, S.A.; Haciyakupoglu, S.; Chaligava, O.; Frontasyeva, M.; Zinicovscaia, I.; Madadzada, A. Temporal changes of atmospheric deposition of major and trace elements in European Turkey, Thrace region. J. Radioanal. Nucl. Chem. 2021, 329, 371–381. [Google Scholar] [CrossRef]
- Hristozova, G.; Marinova, S.; Svozilík, V.; Nekhoroshkov, P.; Frontasyeva, M.V. Biomonitoring of elemental atmospheric deposition: Spatial distributions in the 2015/2016 moss survey in Bulgaria. J. Radioanal. Nucl. Chem. 2020, 323, 839–849. [Google Scholar] [CrossRef]
- Stafilov, T.; Šajn, R.; Barandovski, L.; Andonovska, K.B.; Malinovska, S. Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual. Atmos. Health 2017, 11, 137–152. [Google Scholar] [CrossRef]
- Frontasyeva, M.V.; Galinskaya, T.Y.; Krmar, M.; Matavuly, M.; Pavlov, S.S.; Povtoreyko, E.A.; Radnovic, D.; Steinnes, E. Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by the moss biomonitoring, neutron activation analysis and GIS technology. J. Radioanal. Nucl. Chem. 2004, 259, 141–144. [Google Scholar] [CrossRef]
- Stan, O.A.; Lucaciu, A.; Frontasyeva, M.V.; Steinnes, E. New Results from Air Pollution Studies in Romania. In Radionuclides and Heavy Metals in Environment; E14-2000-126; Springer: Dordrecht, The Netherlands, 2001; pp. 179–190. [Google Scholar] [CrossRef]
- Steinnes, E.; Uggerud, H.T.; Pfaffhuber, K.A.; Berg, T. Atmospheric deposition of heavy metals in Norway. Natl. Moss Surv. 2017, 58, 387–391. [Google Scholar]
- Stranishevskaya, E.; Ostroukhova, E.; Peskova, I.; Levchenko, S.; Matveikina, E.; Shadura, N. Influence of the organic farming system on the composition of Bastardo Magarachskiy grape cultivar as a raw material for production of wines. In E3S Web Conerence; EDP Sciences: Les Ulis, France, 2020; Volume 161, p. 01070. [Google Scholar] [CrossRef] [Green Version]
SRMs | Concentrations, ppm | Uncertainties, % | Recovery Rates, % | |||
---|---|---|---|---|---|---|
Determined | Certified | Determined | Certified | |||
Na | 2711a | 12,377 | 12,000 | 8.5 | 0.01 | 100.01 |
Mg | 1566b | 1107 | 1085 | 10.5 | 2.1 | 102 |
Al | 1573a | 596 | 598 | 5.6 | 2 | 99.7 |
Cl | 1632c | 1147 | 1139 | 8.4 | 3.6 | 100.7 |
K | 433 | 17,026 | 16,600 | 8.4 | 13.4 | 102.6 |
Ca | 1549 | 12,625 | 13,000 | 27.8 | 3.8 | 97.1 |
Sc | 667 | 14.3 | 13.7 | 2 | 5.1 | 104.6 |
Ti | 2710a | 3423 | 3110 | 7.1 | 2.3 | 110.1 |
V | 1547 | 0.38 | 0.37 | 11.6 | 8.1 | 101.9 |
Cr | 667 | 218 | 178 | 4.7 | 9 | 122.6 |
Mn | 1573a | 243 | 246 | 8 | 3.3 | 98.6 |
Fe | 667 | 48,220 | 44,800 | 5.4 | 2.2 | 107.6 |
Co | 667 | 22.1 | 23.0 | 1.7 | 5.6 | 96.1 |
Ni | 667 | 136 | 128 | 4.3 | 7 | 106.3 |
Zn | 667 | 201 | 175 | 2.5 | 7.4 | 115 |
As | 433 | 18.6 | 18.9 | 6.6 | 1.3 | 98.3 |
Se | 667 | 1.4 | 1.6 | 6.6 | 5 | 86.9 |
Br | 433 | 62 | 67 | 2.7 | 11.9 | 93.2 |
Rb | 433 | 112.9 | 99.9 | 16.4 | 8.5 | 113 |
Sr | 1633c | 1040 | 901 | 6.4 | 6.2 | 115.7 |
Sb | 2711 | 18.2 | 19.4 | 3.6 | 9.3 | 93.9 |
I | 1547 | 0.28 | 0.30 | 33.2 | 30 | 94.3 |
Cs | 667 | 8.2 | 7.8 | 2.6 | 9 | 104.8 |
Ba | 2711 | 734 | 726 | 4.4 | 5.2 | 101.1 |
La | 433 | 34.9 | 33.7 | 3.4 | 4.8 | 103.8 |
Ce | 1633c | 179 | 180 | 5.8 | 30 | 99.4 |
Nd | 1633c | 88 | 87 | 10.6 | 30 | 101.7 |
Sm | 433 | 5.3 | 5.6 | 7 | 30 | 95 |
Eu | 667 | 1.3 | 1.0 | 6.1 | 1 | 125.6 |
Tb | 667 | 0.69 | 0.7 | 2.4 | 2.5 | 101.8 |
Yb | 2711 | 3.27 | 2.7 | 7.8 | 30 | 121.1 |
Ta | 667 | 0.87 | 0.9 | 2.3 | 2 | 99.3 |
Th | 667 | 10.5 | 10.0 | 3.2 | 5 | 104.8 |
U | 433 | 2.9 | 2.5 | 4.9 | 8.3 | 117.9 |
Element | Min | Max | Mean | Median | Background | CF |
---|---|---|---|---|---|---|
Na | 185 | 1170 | 386 | 262.5 | 253 | 1.5 |
Mg | 1090 | 5170 | 2212 | 1940 | 1900 | 1.2 |
Al | 872 | 14,000 | 3869 | 2920 | 3158 | 1.2 |
Cl | 46.5 | 359 | 112 | 96.1 | 90.9 | 1.2 |
K | 3370 | 9000 | 6038 | 5960 | 5792 | 1.0 |
Ca | 4890 | 20,900 | 10,383 | 9015 | 8932 | 1.2 |
Sc | 0.36 | 3.32 | 0.83 | 0.59 | 0.58 | 1.4 |
Ti | 54 | 848 | 202 | 156 | 173 | 1.2 |
V | 1.4 | 21.8 | 5.8 | 4.2 | 4.4 | 1.3 |
Cr | 2.4 | 19.9 | 5.9 | 4.7 | 4.21 | 1.4 |
Mn | 32 | 463 | 143 | 93 | 147 | 1.0 |
Fe | 931 | 7260 | 2157 | 1665 | 1532 | 1.4 |
Co | 0.36 | 2.9 | 0.81 | 0.61 | 0.55 | 1.5 |
Ni | 1.58 | 11.9 | 3.59 | 2.64 | 3.18 | 1.1 |
Zn | 14.5 | 52.3 | 28.8 | 27.3 | 24.5 | 1.2 |
As | 0.39 | 3.09 | 0.91 | 0.7 | 0.64 | 1.4 |
Se | 0.17 | 0.53 | 0.28 | 0.26 | 0.27 | 1.1 |
Br | 2.67 | 9.63 | 5.16 | 4.87 | 5.04 | 1.0 |
Rb | 3.41 | 27.2 | 7.24 | 5.5 | 6.01 | 1.2 |
Sr | 13.8 | 46.0 | 26.8 | 26.1 | 20.5 | 1.3 |
Sb | 0.08 | 0.28 | 0.16 | 0.14 | 0.14 | 1.1 |
I | 0.61 | 3.11 | 1.55 | 1.37 | 1.42 | 1.1 |
Cs | 0.16 | 1.75 | 0.40 | 0.27 | 0.28 | 1.5 |
Ba | 16 | 92 | 39 | 35 | 32 | 1.2 |
La | 0.72 | 8.39 | 2.05 | 1.58 | 1.42 | 1.4 |
Ce | 1.64 | 14.4 | 3.73 | 2.96 | 2.75 | 1.4 |
Nd | 0.51 | 6.13 | 2.02 | 1.68 | 1.78 | 1.1 |
Sm | 0.06 | 1.13 | 0.28 | 0.21 | 0.18 | 1.6 |
Eu | 0.02 | 0.3 | 0.09 | 0.06 | 0.04 | 2.1 |
Tb | 0.02 | 0.19 | 0.05 | 0.03 | 0.03 | 1.4 |
Yb | 0.05 | 0.67 | 0.18 | 0.11 | 0.1 | 1.7 |
Ta | 0.03 | 0.23 | 0.06 | 0.04 | 0.05 | 1.3 |
Th | 0.23 | 2.44 | 0.62 | 0.43 | 0.42 | 1.5 |
U | 0.08 | 0.63 | 0.19 | 0.14 | 0.13 | 1.4 |
No. | Contamination Factor (CF) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Location | Al | V | Cr | Fe | Co | Ni | Zn | As | Sb | |
1 | Angar pass | 1.0 | 1.0 | 1.5 | 1.3 | 1.5 | 1.8 | 1.4 | 1.1 | 1.9 |
2 | Slope of Elh-Kaya | 0.7 | 0.7 | 0.9 | 0.9 | 1.1 | 0.8 | 1.1 | 0.8 | 0.8 |
3 | Chatyr-Dag | 0.6 | 0.7 | 0.7 | 0.8 | 1.1 | 0.7 | 1.4 | 1.6 | 0.9 |
4 | Perevalnoe | 0.8 | 0.9 | 1.1 | 1.0 | 1.1 | 0.8 | 1.3 | 0.9 | 0.9 |
5 | Maliy Mayak | 1.3 | 1.0 | 1.2 | 1.4 | 1.3 | 0.8 | 1.1 | 1.1 | 0.9 |
6 | Foros | 3.5 | 4.6 | 3.3 | 3.3 | 3.4 | 2.7 | 1.8 | 3.4 | 2.0 |
7 | Opolznevoe | 3.0 | 2.9 | 3.0 | 3.0 | 3.4 | 1.9 | 1.5 | 3.0 | 1.5 |
8 | Bakhchisarai | 0.9 | 1.1 | 1.1 | 1.0 | 1.0 | 0.7 | 1.1 | 1.0 | 0.9 |
9 | Inkerman | 0.8 | 0.9 | 1.3 | 0.9 | 0.9 | 1.1 | 1.4 | 0.9 | 1.5 |
10 | Sokolynoe | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 0.6 | 1.3 | 1.1 | 0.9 |
11 | Kuibyshevo | 0.9 | 1.0 | 1.1 | 1.1 | 1.2 | 0.8 | 1.2 | 0.9 | 1.2 |
12 | Gasphorta | 0.3 | 0.3 | 0.7 | 0.7 | 0.7 | 1.2 | 1.1 | 0.9 | 0.9 |
13 | Chertovaya lestniza pass | 4.4 | 5.0 | 4.7 | 4.7 | 5.3 | 3.7 | 2.1 | 4.8 | 2.0 |
14 | Peredovoe | 1.2 | 1.2 | 0.9 | 0.9 | 1.0 | 0.8 | 1.0 | 0.9 | 0.8 |
15 | Orlynoe | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 | 0.5 | 0.8 | 0.6 | 0.6 |
16 | Balaklava | 0.4 | 0.5 | 1.1 | 1.3 | 1.4 | 0.9 | 1.3 | 1.4 | 1.3 |
17 | Tylovoe | 0.8 | 1.0 | 0.9 | 1.0 | 0.9 | 0.8 | 1.1 | 1.0 | 1.3 |
18 | Sinapnoe | 1.3 | 1.3 | 0.9 | 1.1 | 1.1 | 1.0 | 0.9 | 1.1 | 0.7 |
19 | Reserve Ayu-Dag | 1.8 | 1.5 | 1.4 | 1.4 | 1.4 | 1.2 | 0.8 | 1.1 | 1.1 |
20 | Nikita | 1.5 | 1.7 | 1.5 | 1.5 | 1.4 | 0.8 | 1.3 | 1.2 | 1.3 |
21 | Solnechnogorskoe | 1.1 | 1.2 | 1.4 | 1.1 | 1.3 | 1.2 | 1.1 | 1.4 | 1.0 |
22 | Sudak | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.6 | 0.6 | 0.8 | 0.8 |
23 | Schebetovka | 1.1 | 1.2 | 1.2 | 1.1 | 1.0 | 0.9 | 0.8 | 1.4 | 1.1 |
24 | Stary Krym | 0.7 | 0.8 | 1.2 | 1.2 | 1.1 | 0.8 | 1.1 | 1.1 | 1.0 |
25 | Radostnoe | 0.7 | 0.8 | 1.2 | 0.9 | 0.8 | 0.6 | 0.8 | 0.8 | 0.7 |
26 | Fersmanovo | 1.2 | 1.5 | 2.2 | 2.8 | 2.6 | 1.8 | 1.1 | 2.3 | 1.3 |
F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Na | 0.89 | −0.04 | 0.05 | −0.03 | 0.10 | Br | 0.20 | 0.86 | 0.20 | −0.16 | −0.04 |
Mg | 0.85 | 0.29 | 0.15 | 0.12 | 0.22 | Rb | 0.95 | 0.17 | 0.10 | 0.18 | 0.02 |
Al | 0.90 | 0.29 | 0.06 | 0.10 | 0.11 | Sr | 0.26 | 0.15 | 0.03 | 0.10 | 0.84 |
Cl | −0.05 | −0.02 | −0.08 | 0.89 | 0.12 | Sb | 0.64 | 0.52 | 0.29 | 0.06 | −0.20 |
K | 0.45 | −0.15 | 0.01 | 0.78 | 0.02 | I | 0.36 | 0.78 | −0.05 | 0.05 | 0.28 |
Ca | 0.10 | 0.56 | −0.61 | −0.05 | 0.25 | Cs | 0.97 | 0.17 | 0.09 | 0.13 | 0.05 |
Sc | 0.98 | 0.14 | 0.09 | 0.10 | 0.02 | Ba | 0.71 | 0.05 | 0.39 | 0.13 | 0.10 |
Ti | 0.88 | 0.32 | 0.10 | 0.10 | 0.08 | La | 0.96 | 0.21 | 0.11 | 0.11 | 0.05 |
V | 0.88 | 0.37 | 0.01 | 0.12 | 0.05 | Ce | 0.97 | 0.18 | 0.10 | 0.09 | 0.04 |
Cr | 0.94 | 0.27 | 0.11 | 0.09 | 0.06 | Nd | 0.87 | 0.21 | 0.03 | −0.01 | 0.29 |
Mn | 0.21 | 0.17 | 0.88 | −0.12 | 0.14 | Sm | 0.95 | −0.02 | 0.18 | 0.16 | 0.06 |
Fe | 0.97 | 0.19 | 0.07 | 0.08 | 0.02 | Eu | 0.88 | 0.21 | 0.13 | 0.06 | −0.10 |
Co | 0.96 | 0.17 | 0.14 | 0.11 | −0.01 | Tb | 0.96 | 0.17 | 0.11 | 0.10 | 0.03 |
Ni | 0.88 | 0.27 | 0.27 | 0.06 | −0.08 | Yb | 0.70 | 0.20 | 0.52 | 0.03 | −0.12 |
Zn | 0.62 | 0.40 | 0.23 | 0.39 | −0.37 | Ta | 0.96 | 0.17 | 0.11 | 0.10 | 0.08 |
As | 0.93 | 0.24 | 0.11 | 0.14 | 0.00 | Th | 0.97 | 0.16 | 0.09 | 0.09 | 0.05 |
Se | 0.57 | 0.31 | 0.44 | 0.46 | −0.32 | U | 0.95 | 0.11 | 0.12 | 0.10 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekhoroshkov, P.; Peshkova, A.; Zinicovscaia, I.; Vergel, K.; Kravtsova, A. Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique. Atmosphere 2022, 13, 573. https://doi.org/10.3390/atmos13040573
Nekhoroshkov P, Peshkova A, Zinicovscaia I, Vergel K, Kravtsova A. Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique. Atmosphere. 2022; 13(4):573. https://doi.org/10.3390/atmos13040573
Chicago/Turabian StyleNekhoroshkov, Pavel, Alexandra Peshkova, Inga Zinicovscaia, Konstantin Vergel, and Alexandra Kravtsova. 2022. "Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique" Atmosphere 13, no. 4: 573. https://doi.org/10.3390/atmos13040573
APA StyleNekhoroshkov, P., Peshkova, A., Zinicovscaia, I., Vergel, K., & Kravtsova, A. (2022). Assessment of the Atmospheric Deposition of Heavy Metals and Other Elements in the Mountain Crimea Using Moss Biomonitoring Technique. Atmosphere, 13(4), 573. https://doi.org/10.3390/atmos13040573