Ionospheric Sounding Based on Spaceborne PolSAR in P-Band
Abstract
:1. Introduction
2. Review of TEC Retrieval and Joint Electronic Density Retrieval
2.1. TEC Retrieval on the Basis of Circular Polarization
2.2. Electronc Density Retrieval Using Spaceborne SAR and Ionosonde
3. Experimental Verification and Discussion
3.1. TEC Retrieval Based on Spaceborne PolSAR at P and L Bands
3.2. Joint Electron Density Retrieval Using Full-Pol SAR and Ionosonde
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kimura, H. Calibration of polarimetric PALSAR imagery affected by Faraday rotation using polarimetric orientation. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3943–3950. [Google Scholar]
- Meyer, F. Performance requirements for ionospheric correction of low-frequency SAR data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3694–3702. [Google Scholar]
- Rogers, N.C.; Quegan, S. The accuracy of Faraday rotation estimation in satellite synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4799–4807. [Google Scholar]
- Kim, J.S.; Papathanassiou, K.P.; Scheiber, R.; Quegan, S. Correcting Distortion of Polarimetric SAR Data Induced by Ionospheric Scintillation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6319–6335. [Google Scholar]
- Meyer, F.; Nicoll, J.B. Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3076–3086. [Google Scholar]
- Pi, X.Q. Ionospheric effects on spacebrone synthetic aperture radar and a new capability of imaging the ionosphere from space. Space Weather. 2015, 13, 737–741. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar]
- Jehle, M.; Ruegg, M.; Zuberbuhler, L.; Small, D.; Meier, E. Measurement of ionospheric faraday rotation in simulated and real spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1512–1523. [Google Scholar]
- Lavalle, M.; Solimini, D.; Pottier, E. Faraday rotation estimation from unfocussed raw data: Analysis using ALOS-PALSAR dat. In Proceedings of the PolInSAR Workshop, Frascati, Italy, 26–30 January 2009. [Google Scholar]
- Pi, X.Q.; Freeman, A.; Chapman, B.; Rosen, P.; Li, Z.H. Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J. Geophys. Res. 2011, 116, 1451–1453. [Google Scholar]
- Wang, C.; Guo, W.L.; Zhao, H.S.; Chen, L.; Wei, Y.W.; Zhang, Y.Y. Improving the topside profile of ionosonde with TEC retrieval from spaceborne polarimetric SAR. Sensors 2019, 19, 516. [Google Scholar] [CrossRef] [Green Version]
- Toan, T.L.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Rocca, F.; Saatchi, S.; et al. The Biomass mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar]
- Wang, C.; Chen, L.; Liu, L. A new analytical model to study the ionospheric effects on VHF/UHF wideband SAR imaging. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4545–4557. [Google Scholar]
- Scuccato, T.; Carrer, L.; Bovolo, F.; Bruzzone, L. Compensating Earth Ionosphere Phase Distortion in Spaceborne VHF Radar Sounders for Subsurface Investigations. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1672–1676. [Google Scholar]
- Li, L.; Zhang, Y.S.; Dong, Z.; Liang, D.N. Ionospheric polarimetric dispersion effect on low-frequency spaceborne SAR imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2163–2167. [Google Scholar]
- Bickel, S.H.; Bates, R.H.T. Effects of magneto-ionic propagation on the polarization scattering matrix. Proc. IEEE 1964, 53, 1089–1091. [Google Scholar]
- Freeman, A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1617–1624. [Google Scholar]
- Chen, J.; Quegan, S. Improved estimators of Faraday rotation in spaceborne polarimetric SAR data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 846–850. [Google Scholar]
- Wang, C.; Liu, L.; Chen, L.; Feng, J.; Zhao, H.S. Improved TEC retrieval based on spaceborne PolSAR data. Radio Sci. 2017, 52, 288–304. [Google Scholar]
- Reinisch, B.W.; Huang, X. Deducing topside profiles and total electron content from bottomside ionograms. Adv. Space Res. 2001, 27, 23–30. [Google Scholar]
- Digital Ionogram DataBase. Available online: http://ulcar.uml.edu/DIDBase/ (accessed on 2 February 2022).
- Austen, J.R.; Franke, S.J.; Liu, C.H. Ionospheric imaging using computerized tomography. Radio Sci. 1988, 23, 299–307. [Google Scholar]
- Cheng, N.; Song, S.; Li, W. Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm. Atmosphere 2021, 12, 215. [Google Scholar] [CrossRef]
Region | Observation Time (UTC:D, M, Y; HH/MM) | |
---|---|---|
Alaska | 1 April 2007; 07/27 | |
Ottawa | 23 May 2007; 03/14 | |
Kyushu | 1 June 2006; 13/34 |
Absolute Deviation (TECU) | Alaska | Ottawa | Kyushu | |||
---|---|---|---|---|---|---|
P-Band | L-Band | P-Band | L-Band | P-Band | L-Band | |
High systematic error | 0.3058 | 1.8193 | 0.1328 | 0.4887 | 0.0633 | 0.3260 |
Low systematic error | 0.1238 | 0.2453 | 0.0780 | 0.0855 | 0.0302 | 0.0539 |
Percentage of Improvement (%) | 23:00 | 01:00 | 02:00 | 03:00 | ||||
---|---|---|---|---|---|---|---|---|
P-Band | L-Band | P-Band | L-Band | P-Band | L-Band | P-Band | L-Band | |
High systematic error | 55.30 | 20.34 | 74.24 | 37.87 | 77.53 | 24.99 | 88.80 | 82.97 |
Low systematic error | 56.67 | 42.78 | 74.51 | 46.14 | 78.18 | 35.46 | 88.80 | 85.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wang, C.; Zhao, H.; Zhang, S.; Cao, L.; Xiao, P.; Liu, L.; Chen, L.; Zhang, Y. Ionospheric Sounding Based on Spaceborne PolSAR in P-Band. Atmosphere 2022, 13, 524. https://doi.org/10.3390/atmos13040524
Guo W, Wang C, Zhao H, Zhang S, Cao L, Xiao P, Liu L, Chen L, Zhang Y. Ionospheric Sounding Based on Spaceborne PolSAR in P-Band. Atmosphere. 2022; 13(4):524. https://doi.org/10.3390/atmos13040524
Chicago/Turabian StyleGuo, Wulong, Cheng Wang, Haisheng Zhao, Shaodong Zhang, Le Cao, Peng Xiao, Lu Liu, Liang Chen, and Yuanyuan Zhang. 2022. "Ionospheric Sounding Based on Spaceborne PolSAR in P-Band" Atmosphere 13, no. 4: 524. https://doi.org/10.3390/atmos13040524
APA StyleGuo, W., Wang, C., Zhao, H., Zhang, S., Cao, L., Xiao, P., Liu, L., Chen, L., & Zhang, Y. (2022). Ionospheric Sounding Based on Spaceborne PolSAR in P-Band. Atmosphere, 13(4), 524. https://doi.org/10.3390/atmos13040524