Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Satellite-Observed Methane Concentration Data
2.1.2. Surface Observation Data
2.2. Methodologies
2.2.1. Satellite-Observed XCH4 Retrieval Algorithms
2.2.2. Inverse Distance Weighted Interpolation Method
2.2.3. Linear Sinusoidal Trend-Fitting Mode
2.2.4. Mann–Kendall (M-K) Nonparametric Test
3. Result Analysis and Discussion
3.1. Accuracy Verification of Satellite Observation Data
3.2. Temporal Variation Characteristics of Atmospheric XCH4 over China
3.3. Spatial Distribution Characteristics of Atmospheric XCH4 Concentrations over China
3.4. Analysis of the Influence of Anthropic Factors on Atmospheric XCH4 Concentration over China
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Annual Average | STD | Maximum | Minimum | ||
---|---|---|---|---|---|---|
XCH4 Concentration | Month | XCH4 Concentration | Month | |||
2003 | 1760.73 | 21.11 | 1789.47 | 8 | 1732.05 | 2 |
2004 | 1759.98 | 22.56 | 1791.33 | 8 | 1733.32 | 2 |
2005 | 1762.39 | 20.53 | 1794.38 | 8 | 1732.04 | 3 |
2006 | 1761.55 | 22.59 | 1790.07 | 8 | 1729.95 | 2 |
2007 | 1773.28 | 23.10 | 1799.03 | 8 | 1746.54 | 3 |
2008 | 1778.60 | 25.45 | 1804.03 | 9 | 1759.50 | 1 |
2009 | 1782.43 | 26.96 | 1798.47 | 8 | 1762.71 | 1 |
2010 | 1788.65 | 20.48 | 1807.18 | 9 | 1772.35 | 2 |
2011 | 1793.07 | 18.44 | 1811.87 | 9 | 1782.04 | 2 |
2012 | 1802.73 | 18.12 | 1816.93 | 9 | 1787.77 | 2 |
2013 | 1808.62 | 17.73 | 1829.14 | 9 | 1790.21 | 2 |
2014 | 1815.38 | 17.16 | 1835.94 | 8 | 1805.46 | 2 |
2015 | 1822.32 | 18.52 | 1838.35 | 8 | 1812.58 | 2 |
2016 | 1835.46 | 18.54 | 1869.75 | 8 | 1815.74 | 2 |
2017 | 1841.48 | 19.02 | 1857.62 | 9 | 1828.41 | 2 |
2018 | 1849.14 | 20.93 | 1879.14 | 9 | 1831.80 | 2 |
2019 | 1863.03 | 20.00 | 1883.69 | 8 | 1843.02 | 2 |
References
- Solomon, S.; Qin, D.; Manning, M. Intergovernmental Panel on Climate Change: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 500–590. [Google Scholar]
- Han, Y. The Temproal and Spatial Distribution of CH4 Vertiacal Column Density over China Based on Satellite Remote Sensing Data; Nanjing University: Nanjing, China, 2011. [Google Scholar]
- Steele, L.P.; Dlugokencky, E.J.; Lang, P.M.; Tans, P.P.; Martin, R.C.; Masarie, K.A. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature 1992, 358, 313–316. [Google Scholar] [CrossRef]
- Khalil, M.; Rasmussen, R.A. Atmospheric methane: Trends over the last 10,000 years. Atmos. Environ. 1987, 21, 2445–2452. [Google Scholar] [CrossRef]
- Stocker, T.F. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zhang, Y.M.; Hu, C.S.; Zhang, J.B.; Dong, W.X.; Wang, Y.Y.; Song, L.N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chin. J. Eco-Agric. 2011, 19, 966–975. [Google Scholar] [CrossRef]
- Fernández-Amador, O.; Oberdabernig, D.A.; Tomberger, P. Do methane emissions converge? Evidence from global panel data on production- and consumption-based emissions. Empir. Econ. 2021, 61, 1–24. [Google Scholar] [CrossRef]
- Zhou, L.X.; Tang, J.; Wen, Y.P.; Zhang, X.C.; Ji, J.; Zheng, M. Characteristics of atmosphereic methane concertration variation at MT. Waliguan. Q. J. Appl. Meteorol. 1998, 9, 385–391. [Google Scholar]
- WMO. Strategy for the Implementation of the Global Atmosphere Watch Programme (2001–2007), a contribution to the implementation of the WMO longterm plan. GAW Rep. Rep. 2001, 142, 1–21. [Google Scholar]
- Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.J.A.C.; et al. Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos. Chem. Phys. 2015, 15, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Houweling, S.; Segers, A.; Krol, M.; Frankenberg, C.; Scheepmaker, R.A.; Dlugokencky, E.; Wofsy, S.C.; Kort, E.A.; Sweeney, C. Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. Atmos. 2013, 118, 7350–7369. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, D.; Saroj, K.; Divya, D. Recent advances in satellite mapping of global air quality: Evidences during COVID-19 pandemic. Environ. Sustain. 2021, 4, 469–487. [Google Scholar]
- Malina, E.; Muller, J.P.; Walton, D. A simple and quick sensitivity analysis method for methane isotopologues detection with GOSAT-TANSO-FTS. UCL Open Environ. 2021, 2, 1–21. [Google Scholar] [CrossRef]
- Cressot, C.; Chevallier, F.; Bousquet, P.; Crevoisier, C.; Dlugokencky, E.J.; Fortems-Cheiney, A.; Frankenberg, C.; Parker, R.; Pison, I.; Scheepmaker, R.A.J.A.C.; et al. On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmos. Chem. Phys. 2014, 14, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Kulawik, S.S.; Worden, J.R.; Payne, V.H.; Fu, D.; Yin, Y. Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements. Atmos. Meas. Tech. 2021, 14, 335–354. [Google Scholar] [CrossRef]
- Xiong, X.; Barnet, C.; Maddy, E.S.; Gambacorta, A.; Wofsy, S.C. Mid-upper tropospheric methane retrieval from IASI and its validation. Atmos. Meas. Tech. 2013, 6, 2255–2265. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Landgraf, J.J.A.M.T. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Xiong, X.; Houweling, S.; Wei, J.; Maddy, E.; Sun, F.; Barnet, C. Methane plume over south Asia during the monsoon season: Satellite observation and model simulation. Atmos. Chem. Phys. 2008, 8, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Schuck, T.J.; Brenninkmeijer, C.A.M.; Baker, A.K.; Slemr, F.; Zahn, A. Greenhouse gas relationships in the Indian summer monsoon plume measured by the CARIBIC passenger aircraft. Atmos. Chem. Phys. 2010, 10, 2031–2087. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Le, Q. Analysis distribution of CH4 column concentration using SCIAMACHY data in China. Geospat. Inf. 2011, 9, 115–117. [Google Scholar]
- Hang, X.; Bai, W.; Zhang, P.; Wang, W. Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations. Chin. Sci. Bull. 2011, 56, 3321–3327. [Google Scholar]
- Wang, H.M.; Li, J.T.; Zhang, Y.; Li, S.S.; Zhang, L.; Chen, L.F. Spatial and temporal distribution of near-surface methane concentration over China based on AIRS observations. J. Remote Sens. 2015, 19, 827–835. [Google Scholar]
- Wu, X.; Zhang, X.; Chuai, X.; Huang, X.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Bösch, H.; Bovensmann, H.; Bril, A.; Buchwitz, M.; Butz, A.; Burrows, J.P.; O’Dell, C.W.; Guerlet, S.; Hasekamp, O.; et al. A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median algorithm EMMA. Atmos. Chem. Phys. 2013, 13, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Guan, L.; Tao, F. Changes of CH4 Concentrations Obtained by Ground-based Observations at Five Atomspheric Background Stations in China. Environ. Sci. Technol. 2018, 41, 1–7. [Google Scholar]
- He, Q.; Yu, T.; Gu, X.F.; Cheng, T.H.; Zhang, Y.; Xie, D.H. Global Atmospheric Methane Variation and Temporal-Saptial Distribution Analysis Based on Ground-based and Satellite Data. Remote Sens. Imformat. 2012, 27, 34–39. [Google Scholar]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, O.; Koide, H.; Dlugokencky, E. The state of greenhouse gases in the atmosphere using global observations through 2010. WMO Greenh. Gas Bull. 2012, 8, 11012. [Google Scholar]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Heymann, J.; Bovensmann, H.; Burrows, J.P. Long-term analysis of carbon dioxide and methane column-averaged mole fractions re-trieved from SCIAMACHY. Atmos. Chem. Phys. 2011, 11, 2863–2880. [Google Scholar] [CrossRef] [Green Version]
- Schneising, O.; Bergamaschi, P.; Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Deutscher, N.M.; Griffith, D.W.T.; Heymann, J.; Macatangay, R.; Messerschmidt, J.; et al. Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results. Atmos. Chem. Phys. 2012, 12, 1527–1540. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Aben, I.; Bergamaschi, P.; Dlugokencky, E.J.; van Hees, R.; Houweling, S.; van derMeer, P.; Snel, R.; Tol, P. Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. J. Geophys. Res. 2011, 116, D04302. [Google Scholar] [CrossRef]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef] [Green Version]
- Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A.; et al. Towards accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett. 2011, 38, L14812. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F. Spatial Analysis; Science Press: Beijing, Chiana, 2006; pp. 17–29. [Google Scholar]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Jiang, H.; Zhang, X.Y.; Zhou, G.M.; Quan, Y.S.; Xiao, Z.Y. Temporal-Spatial Distribution of Tropospheric NO_2 in China Using OMI Satellite Remote Sensing Data. Res. Environ. Sci. 2009, 22, 932–937. [Google Scholar]
- Xu, J.H.; Hannakaisa, L.; Liu, Q.F.; Wang, K.; Wang, L. Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing. Atmos. Pollut. Res. 2021, 12, 57–67. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.L.; Choi, D.; Cheang, W.K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, K.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. 1998, 1031, 17149–17162. [Google Scholar] [CrossRef]
- Rasch, P.J.; Mahowald, N.M.; Eaton, B.E. Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species. J. Geophys. Res. Atmos. 1997, 102, 28127. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H. Monotonic trend and step changes in Japanese precipitation. J. Hygrol. 2003, 279, 144–150. [Google Scholar] [CrossRef]
- Liu, H.Z.; Xu, C.C.; Li, J.X.; Pi, Y.Y. Changes in the Maximum Wind Speed and the Confirmatory Analysis by the Circulation Index in Xinjiang Region. Yellow River 2017, 39, 19–25. [Google Scholar]
- Zhi, C.; Wang, T.; Yang, L. Methane emission of animal husbandry and reduction measures in Ningxia. J. Agric. Sci. 2017, 38, 7–9. [Google Scholar]
- Zhang, F.; Zhang, S.; Tang, R.; Wang, H.Y.; Yang, Z.B.; Zhou, Y.L.; Sun, Z.J. Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau. Geophys. Geochem. Explor. 2017, 46, 1027–1036. [Google Scholar]
- Khalil, M.A.K.; Shearer, M.J. Decreasing emissions of methane from rice agriculture. Int. Congr. Ser. 2006, 1293, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Liu, Q.; Xu, Q. Remote sensing of seasonal variation in column abundance of atmospheric CH4. Acta Meteorol. Sin. 2001, 15, 249–256. [Google Scholar]
- Saunois, M.; Jackson, R.B.; Bousquet, P.; Poulter, B.; Canadell, J. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 2016, 11, 120207. [Google Scholar] [CrossRef] [Green Version]
- Edenhofer, O.; Pichsmadruge, T.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S. IPCC. Contribution to the Fifth Assesment Report of the Intergovernmental Panel on Climate Changes: Summary for Policymakers; Cambridge University Press: New York, NY, USA, 2014; pp. 1–28. [Google Scholar]
- Wang, Z.-P.; Han, X.; Wang, G.G.; Song, Y.; Gulledge, J. Aerobic methane emission from plants in the Inner Mongolia steppe. Environ. Sci. Technol. 2008, 42, 62–68. [Google Scholar] [CrossRef]
- Huang, M.T.; Wang, T.J.; Zhao, X.F.; Xie, X.D.; Wang, D.Y. Estimation of atmospheric methane emissions and its spatial distribution in China during 2015. Acta Sci. Circumstantiae 2019, 39, 1371–1380. [Google Scholar]
- Cao, G.; Xu, X.; Long, R.; Wang, Q.; Wang, C.; Du, Y.; Zhao, X. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol. Lett. 2008, 4, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.X.; Zheng, G.D.; Liang, S.Y.; Fan, C.Y.; Wang, Z.X.; Liang, M.L. Contributions of geologic methane to atmospheric methane sources and sinks. Bull. Mineral. Petrol. Geochem. 2012, 31, 139–145+183. [Google Scholar]
- Li, H.; Tang, J. Research Progress of Atmospheric Methane Emission Sources. J. Hangzhou Dianzi Univ. 2014, 34, 52–55. [Google Scholar]
- Masoud, G.; Yannic, L.; Yunsoo, C.; Bijia, Y. Deep Learning Estimation of Daily Ground-Level NO2 Concentrations From Remote Sensing Data. J. Geophys. Res. Atmos. 2021, 126, e2021JD034925. [Google Scholar]
- Shilpa, S.; Kailas, P.; Chumchu, P. NO2 pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU model. Int. J. Comput. Sci. Eng. 2021, 24, 64–73. [Google Scholar]
Station Name | Longitude (°) | Latitude (°) | Elevation (m) | Time | Country | Type |
---|---|---|---|---|---|---|
WLG | 100.89 | 36.29 | 3810 | September 2001–December 2018 | China | Inland |
SDZ | 117.12 | 40.65 | 287 | September 2009–September 2015 | China | Inland |
LLN | 120.87 | 23.47 | 2862 | August 2006–December 2018 | China | Island |
UUM | 111.08 | 44.44 | 992 | January 2001–December 2018 | Mongolia | Inland |
AMY | 126.33 | 36.54 | 42 | January 2001–February 2018 | Korea | Inland |
PDI | 103.51 | 21.57 | 1466 | January 2014–December 2018 | Viet Nam | Inland |
Surface Stations | Slope | Intercept | R | p | RMSE | N |
---|---|---|---|---|---|---|
LLN | 0.75 | 422.58 | 0.77 | <0.001 | 35.28 | 145 |
UUM | 0.92 | 47.26 | 0.84 | <0.001 | 41.72 | 191 |
WLG | 0.74 | 400.06 | 0.66 | <0.001 | 33.06 | 175 |
PDI | 0.42 | 1384.48 | 0.42 | <0.001 | 40.85 | 52 |
SDZ | 0.31 | 1205.99 | 0.62 | <0.001 | 45.51 | 73 |
AMY | 0.76 | 356.90 | 0.76 | <0.001 | 22.09 | 179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, W.; Xie, H.; Wang, Y.; Wang, L.; Hu, F. Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations. Atmosphere 2022, 13, 525. https://doi.org/10.3390/atmos13040525
Xu J, Li W, Xie H, Wang Y, Wang L, Hu F. Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations. Atmosphere. 2022; 13(4):525. https://doi.org/10.3390/atmos13040525
Chicago/Turabian StyleXu, Jianhui, Weitao Li, Huaming Xie, Yanxia Wang, Li Wang, and Feng Hu. 2022. "Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations" Atmosphere 13, no. 4: 525. https://doi.org/10.3390/atmos13040525
APA StyleXu, J., Li, W., Xie, H., Wang, Y., Wang, L., & Hu, F. (2022). Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations. Atmosphere, 13(4), 525. https://doi.org/10.3390/atmos13040525