Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. SALVI Microreactor Fabrication
2.3. Dark and UV Aging Experiments
2.4. In Situ Liquid ToF-SIMS
2.5. Liquid SIMS Data Analysis
2.6. Ab Initio Molecular Dynamics Simulation
3. Results and Discussions
3.1. Comparing AqSOA Formation between UV and Dark Conditions
3.2. Interfacial Reactions Leading to AqSOA Formation
3.3. AqSOAs’ Influence on the UV Absorption at the a–l Interface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, D.J.; George, C. Sea-Surface Chemistry and Its Impact on the Marine Boundary Layer. Environ. Sci. Technol. 2012, 46, 10385–10389. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Yamashita, Y.; Kawana, K.; Tachibana, E.; Kagami, S.; Mochida, M.; Suzuki, K.; Nishioka, J. Chemical transfer of dissolved organic matter from surface seawater to sea spray water-soluble organic aerosol in the marine atmosphere. Sci. Rep. 2018, 8, 14861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaida, V. Perspective: Water cluster mediated atmospheric chemistry. J. Chem. Phys. 2011, 135, 020901. [Google Scholar] [CrossRef] [PubMed]
- Farnik, M.; Fedor, J.; Kocisek, J.; Lengyel, J.; Pluharova, E.; Poterya, V.; Pysanenko, A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. [Google Scholar] [CrossRef]
- Deal, A.M.; Rapf, R.J.; Vaida, V. Water–Air Interfaces as Environments to Address the Water Paradox in Prebiotic Chemistry: A Physical Chemistry Perspective. J. Phys. Chem. A 2021, 125, 4929–4942. [Google Scholar] [CrossRef]
- Mungall, E.L.; Abbatt, J.P.D.; Wentzell, J.J.B.; Lee, A.K.Y.; Thomas, J.L.; Blais, M.; Gosselin, M.; Miller, L.A.; Papakyriakou, T.; Willis, M.D.; et al. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer. Proc. Natl. Acad. Sci. USA 2017, 114, 6203–6208. [Google Scholar] [CrossRef] [Green Version]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Niedner-Schatteburg, G.; Bondybey, V.E. FT-ICR Studies of Solvation Effects in Ionic Water Cluster Reactions. Chem. Rev. 2000, 100, 4059–4086. [Google Scholar] [CrossRef]
- Schweitzer, F.; Magi, L.; Mirabel, P.; George, C. Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets. J. Phys. Chem. A 1998, 102, 593–600. [Google Scholar] [CrossRef]
- Vaida, V. Atmospheric radical chemistry revisited Sunlight may directly drive previously unknown organic reactions at environmental surfaces. Science 2016, 353, 650. [Google Scholar] [CrossRef]
- Donaldson, D.J.; Vaida, V. The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem. Rev. 2006, 106, 1445–1461. [Google Scholar] [CrossRef] [PubMed]
- Ip, H.S.S.; Huang, X.H.H.; Yu, J.Z. Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophys. Res. Lett. 2009, 36, L01802. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Muller, J.F.; De Smedt, I.; Van Roozendael, M.; Kanakidou, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P. The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling. Atmos. Chem. Phys. 2009, 9, 8431–8446. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, R.; Molina, L.T.; Molina, M.J.; Shirley, T.; Brune, W.H. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophys. Res. Lett. 2005, 32, L08806. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, T.; van Pinxteren, D.; Herrmann, H. Multiphase Chemistry of Glyoxal: Revised Kinetics of the Alkyl Radical Reaction with Molecular Oxygen and the Reaction of Glyoxal with OH, NO3, and SO4− in Aqueous Solution. Environ. Sci. Technol. 2015, 49, 343–350. [Google Scholar] [CrossRef]
- Betterton, E.A.; Hoffmann, M.R. Henry’s law constants of some environmentally important aldehydes. Environ. Sci. Technol. 1988, 22, 1415–1418. [Google Scholar] [CrossRef]
- Lim, Y.B.; Tan, Y.; Perri, M.J.; Seitzinger, S.P.; Turpin, B.J. Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 2010, 10, 10521–10539. [Google Scholar] [CrossRef] [Green Version]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069–11102. [Google Scholar] [CrossRef] [Green Version]
- Galloway, M.M.; Loza, C.L.; Chhabra, P.S.; Chan, A.W.H.; Yee, L.D.; Seinfeld, J.H.; Keutsch, F.N. Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation. Geophys. Res. Lett. 2011, 38, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, J.R.; Lim, Y.B.; Tan, Y.; Altieri, K.E.; Turpin, B.J. Glyoxal secondary organic aerosol chemistry: Effects of dilute nitrate and ammonium and support for organic radical–radical oligomer formation. J. Environ. Chem. 2013, 10, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Ishizuka, S.; Tonokura, K.; Enami, S. Interfacial vs Bulk Ozonolysis of Nerolidol. Environ. Sci. Technol. 2019, 53, 5750–5757. [Google Scholar] [CrossRef] [PubMed]
- Ervens, B.; Carlton, A.G.; Turpin, B.J.; Altieri, K.E.; Kreidenweis, S.M.; Feingold, G. Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 2008, 35, 85–100. [Google Scholar] [CrossRef]
- Lee, A.K.Y.; Zhao, R.; Gao, S.S.; Abbatt, J.P.D. Aqueous-Phase OH Oxidation of Glyoxal: Application of a Novel Analytical Approach Employing Aerosol Mass Spectrometry and Complementary Off-Line Techniques. J. Phys. Chem. A 2011, 115, 10517–10526. [Google Scholar] [CrossRef] [PubMed]
- Ervens, B.; Sorooshian, A.; Aldhaif, A.M.; Shingler, T.; Crosbie, E.; Ziemba, L.; Campuzano-Jost, P.; Jimenez, J.L.; Wisthaler, A. Is there an aerosol signature of chemical cloud processing? Atmos. Chem. Phys. 2018, 18, 16099–16119. [Google Scholar] [CrossRef] [Green Version]
- Tsui, W.G.; Woo, J.L.; McNeill, V.F. Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation. Atmosphere 2019, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- De Haan, D.O.; Corrigan, A.L.; Tolbert, M.A.; Jimenez, J.L.; Wood, S.E.; Turley, J.J. Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating Droplets. Environ. Sci. Technol. 2009, 43, 8184–8190. [Google Scholar] [CrossRef]
- Galloway, M.M.; Chhabra, P.S.; Chan, A.W.H.; Surratt, J.D.; Flagan, R.C.; Seinfeld, J.H.; Keutsch, F.N. Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331–3345. [Google Scholar] [CrossRef] [Green Version]
- Paglione, M.; Gilardoni, S.; Rinaldi, M.; Decesari, S.; Zanca, N.; Sandrini, S.; Giulianelli, L.; Bacco, D.; Ferrari, S.; Poluzzi, V.; et al. The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy. Atmos. Chem. Phys. 2020, 20, 1233–1254. [Google Scholar] [CrossRef] [Green Version]
- Kodros, J.K.; Papanastasiou, D.K.; Paglione, M.; Masiol, M.; Squizzato, S.; Florou, K.; Skyllakou, K.; Kaltsonoudis, C.; Nenes, A.; Pandis, S.N. Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proc. Natl. Acad. Sci. USA 2020, 117, 33028–33033. [Google Scholar] [CrossRef]
- Zhao, R.; Lee, A.K.Y.; Soong, R.; Simpson, A.J.; Abbatt, J.P.D. Formation of aqueous-phase alpha-hydroxyhydroperoxides (alpha-HHP): Potential atmospheric impacts. Atmos. Chem. Phys. 2013, 13, 5857–5872. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Lee, A.K.Y.; Abbatt, J.P.D. Investigation of Aqueous-Phase Photooxidation of Glyoxal and Methylglyoxal by Aerosol Chemical Ionization Mass Spectrometry: Observation of Hydroxyhydroperoxide Formation. J. Phys. Chem. A 2012, 116, 6253–6263. [Google Scholar] [CrossRef] [PubMed]
- Mucha, M.; Mielke, Z. Photochemistry of the glyoxal–hydrogen peroxide complexes in solid argon: Formation of 2-hydroxy-2-hydroperoxyethanal. Chem. Phys. Lett. 2009, 482, 87–92. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, Y.F.; Zhang, F.; Chen, J.M.; Zhu, Z.H.; Yu, X.Y. Deciphering the aqueous chemistry of glyoxal oxidation with hydrogen peroxide using molecular imaging. Phys. Chem. Chem. Phys. 2017, 19, 20357–20366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yu, X.; Chen, J.; Zhu, Z.; Yu, X.-Y. Dark air–Liquid interfacial chemistry of glyoxal and hydrogen peroxide. NPJ Clim. Atmos. Sci. 2019, 2, 28. [Google Scholar] [CrossRef]
- Sui, X.; Xu, B.; Yu, J.C.; Kostko, O.; Ahmed, M.; Yu, X.Y. Studying Interfacial Dark Reactions of Glyoxal and Hydrogen Peroxide Using Vacuum Ultraviolet Single Photon Ionization Mass Spectrometry. Atmosphere 2021, 12, 338. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, L.X.; Santra, B.; Ko, H.Y.; DiStasio, R.A.; Klein, M.L.; Car, R.; Wu, X.F. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 2018, 10, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, A.; Ricker, H.M.; Gale, A.G.; Ball, B.T.; Odbadrakh, T.T.; Shields, G.C.; Navea, J.G. Particle formation and surface processes on atmospheric aerosols: A review of applied quantum chemical calculations. Int. J. Quantum Chem. 2020, 120, e26350. [Google Scholar] [CrossRef]
- Zhang, W.N.; Zhong, J.; Shi, Q.J.; Gao, L.; Ji, Y.M.; Li, G.Y.; An, T.C.; Francisco, J.S. Mechanism for Rapid Conversion of Amines to Ammonium Salts at the Air-Particle Interface. J. Am. Chem. Soc. 2021, 143, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, A.; Malila, J. An adsorption theory of heterogeneous nucleation of water vapour on nanoparticles. Atmos. Chem. Phys. 2016, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Tröstl, J.; Junninen, H.; Frege, C.; Henne, S.; Hoyle, C.R.; Molteni, U.; Herrmann, E.; Adamov, A.; Bukowiecki, N.; et al. New particle formation in the free troposphere: A question of chemistry and timing. Science 2016, 352, 1109–1112. [Google Scholar] [CrossRef] [Green Version]
- Kangasluoma, J.; Samodurov, A.; Attoui, M.; Franchin, A.; Junninen, H.; Korhonen, F.; Kurtén, T.; Vehkamäki, H.; Sipilä, M.; Lehtipalo, K.; et al. Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. J. Phys. Chem. C 2016, 120, 7444–7450. [Google Scholar] [CrossRef]
- Yang, L.; Yu, X.Y.; Zhu, Z.H.; Iedema, M.J.; Cowin, J.P. Probing liquid surfaces under vacuum using SEM and ToF-SIMS. Lab Chip 2011, 11, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, X.-Y.; Zhu, Z.; Thevuthasan, T.; Cowin, J.P. Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J. Vac. Sci. Technol. A 2011, 29, 061101. [Google Scholar] [CrossRef]
- Sui, X.; Xu, B.; Yao, J.; Kostko, O.; Ahmed, M.; Yu, X.-Y. New Insights into Secondary Organic Aerosol Formation at the Air–Liquid Interface. J. Phys. Chem. Lett. 2021, 12, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yu, X.F.; Sui, X.; Chen, J.M.; Zhu, Z.H.; Yu, X.Y. Evolution of aqSOA from the Air-Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. Environ. Sci. Technol. 2019, 53, 10236–10245. [Google Scholar] [CrossRef] [PubMed]
- Munger, J.W.; Collett, J.; Daube, B.; Hoffmann, M.R. Fogwater Chemistry at Riverside, California. Atmos. Environ. B-Urb. 1990, 24, 185–205. [Google Scholar] [CrossRef]
- Volkamer, R.; Ziemann, P.J.; Molina, M.J. Secondary Organic Aerosol Formation from Acetylene (C2H2): Seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907–1928. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.B.; Turpin, B.J. Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH. Atmos. Chem. Phys. 2015, 15, 12867–12877. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q.; Zhu, L. Wavelength-dependent photolysis of glyoxal in the 290-420 nm region. J. Phys. Chem. A 2003, 107, 4643–4651. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhu, L.; Francisco, J.S. Wavelength-dependent photolysis of n-butyraldehyde and i-butyraldehyde in the 280-330-nm region. J. Phys. Chem. A 2002, 106, 7755–7763. [Google Scholar] [CrossRef]
- Nakayama, T.; Sato, K.; Matsumi, Y.; Imamura, T.; Yamazaki, A.; Uchiyama, A. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmos. Chem. Phys. 2013, 13, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhou, Y.; Hua, X.; Zhu, Z.; Yu, X.-Y. In situ characterization of hydrated proteins in water by SALVI and ToF-SIMS. JOVE J. Vis. Exp. 2016, e53708. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Yao, J.; Ding, Y.Z.; Yu, J.C.; Hua, X.; Evans, J.E.; Yu, X.F.; Lao, D.B.; Heldebrant, D.J.; Nune, S.K.; et al. Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis. J. Am. Soc. Mass. Spectrom. 2016, 27, 2006–2013. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.F.; Yu, J.C.; Zhou, Y.F.; Zhang, Y.Y.; Wang, J.G.; Evans, J.E.; Yu, X.Y.; Wang, X.L.; Zhu, Z.H. An investigation of the beam damage effect on in situ liquid secondary ion mass spectrometry analysis. Rapid. Commun. Mass Spectrom. 2017, 31, 2035–2042. [Google Scholar] [CrossRef]
- Hua, X.; Szymanski, C.; Wang, Z.; Zhou, Y.; Ma, X.; Yu, J.; Evans, J.; Orr, G.; Liu, S.; Zhu, Z. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integr. Biol. 2016, 8, 635–644. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, Y.; Chen, J.; Zhu, Z.; Yu, X.-Y. ToF-SIMS characterization of glyoxal and hydrogen peroxide surface oxidation products. Surf. Interf. Anal. 2018, 50, 927–938. [Google Scholar] [CrossRef]
- Verlet, L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef] [Green Version]
- Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Van Dam, H.J.J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.L.; et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.Z.; Lei, Z.Y.; Olson, N.E.; Riva, M.; Koss, A.R.; Zhang, Z.F.; Gold, A.; Jayne, J.T.; Worsnop, D.R.; et al. Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPDX) in Phase Separated Particles. ACS Earth Space Chem. 2019, 3, 2646–2658. [Google Scholar] [CrossRef]
- Tilgner, A.; Schaefer, T.; Alexander, B.; Barth, M.; Collett, J.L.; Fahey, K.M.; Nenes, A.; Pye, H.O.T.; Herrmann, H.; McNeill, V.F. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. Atmos. Chem. Phys. 2021, 21, 13483–13536. [Google Scholar] [CrossRef]
- Fournier, J.A.; Carpenter, W.; De Marco, L.; Tokmakoff, A. Interplay of Ion Water and Water Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy. J. Am. Chem. Soc. 2016, 138, 9634–9645. [Google Scholar] [CrossRef]
- Colussi, A.J.; Enami, S.; Ishizuka, S. Hydronium Ion Acidity Above and Below the Interface of Aqueous Microdroplets. ACS Earth Space Chem. 2021, 5, 2341–2346. [Google Scholar] [CrossRef]
- Hartikainen, A.; Tiitta, P.; Ihalainen, M.; Yli-Pirila, P.; Orasche, J.; Czech, H.; Kortelainen, M.; Lamberg, H.; Suhonen, H.; Koponen, H.; et al. Photochemical transformation of residential wood combustion emissions: Dependence of organic aerosol composition on OH exposure. Atmos. Chem. Phys. 2020, 20, 6357–6378. [Google Scholar] [CrossRef]
- Guo, J.C.; Zhou, S.Z.; Cai, M.F.; Zhao, J.; Song, W.; Zhao, W.X.; Hu, W.W.; Sun, Y.L.; He, Y.; Yang, C.Q.; et al. Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: Aerosol composition, sources, and chemical processes in Guangzhou, China. Atmos. Chem. Phys. 2020, 20, 7595–7615. [Google Scholar] [CrossRef]
- Ruger, C.P.; Maillard, J.; Le Maitre, J.; Ridgeway, M.; Thompson, C.J.; Schmitz-Afonso, I.; Gautier, T.; Carrasco, N.; Park, M.A.; Giusti, P.; et al. Structural Study of Analogues of Titan’s Haze by Trapped Ion Mobility Coupled with a Fourier Transform Ion Cyclotron Mass Spectrometer. J. Am. Soc. Mass Spectr. 2019, 30, 1169–1173. [Google Scholar] [CrossRef] [Green Version]
- Heald, C.L.; Kroll, J.H.; Jimenez, J.L.; Docherty, K.S.; DeCarlo, P.F.; Aiken, A.C.; Chen, Q.; Martin, S.T.; Farmer, D.K.; Artaxo, P. A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Schobesberger, S.; Junninen, H.; Bianchi, F.; Lönn, G.; Ehn, M.; Lehtipalo, K.; Dommen, J.; Ehrhart, S.; Ortega, I.K.; Franchin, A.; et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl. Acad. Sci. USA 2013, 110, 17223–17228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
m/z+ | [M + H]+ | Peak Assignment |
---|---|---|
Oxidation Products | ||
93 | C2H5O4+ | 2-hydroxy-2-hydroperoxyethanal (HHPE) |
Oligomers/Polymers | ||
149 | C4H5O6+ | C2H4O3 (Glyoxylic acid)—C2H4O4 (HHPE) |
177 | C5H5O7+ | m/z+ 57 C2HO2+—m/z 120 C3H4O5a |
193 | C5H5O8+ | m/z+ 177 C5H5O7+—O |
223 | C6H7O9+ | m/z+ 149 C4H5O6—m/z 110 C2H6O5 |
225 | C6H9O9+ | HHPE—glyoxal—C2H2O3 |
231 | C6H15O9+ | m/z+ 173 C4H13O7+—glyoxal |
301 | C8H13O12+ | m/z+ 149 C4H5O6+—m/z+ 152 C4H8O6 |
327 | C6H15O15+ | m/z+ 94 C2H6O4—m/z 110 C2H6O5—m/z 122 C2H2O6 |
333 | C6H21O15+ | m/z+ 317 C6H21O14+—O |
347 | C8H11O15+ | m/z+ 149 C4H5O6—m/z 76 C2H4O3—m/z 122 C2H2O6 |
411 | C8H27O18+ | m/z+ 353 C6H25O16+—m/z 58 C2H2O2 |
485 | C10H29O21+ | m/z+ 411 C8H27O18+—m/z 74 C2H2O3 |
533 | C6H45O27+, C14H29O21+ | m/z+ 515 C6H15O11+—15H2O/7 C2H4O3 (monohydrated glyoxal) |
537 | C8H41O25+ | m/z+ 461 C4H37O22+—C2H4O3 (monohydrated glyoxal) |
Cluster Ions | ||
113 | C2H9O5+ | C2H2O2···(H2O)3H+b |
165 | C4H7O7+ | C2H3O3···C2H2O4H+ |
173 | C4H13O7+ | m/z 154 C4H10O6 (glyoxal dimer) ···H3O+ |
191 | C3H11O9+ | m/z+ 113 CH5O6+···m/z 78 C2H6O3 |
261 | C6H13O11+ | m/z+ 108 C2H4O5H+···m/z 152 C4H8O6 |
263 | C6H15O11+ | m/z+ 110 C2H6O5H+···m/z 152 C4H8O6 |
281 | C6H17O12+ | m/z+ 263 C6H15O11+···H2O |
299 | C6H19O13+ | m/z+ 263 C6H15O11+···2H2O |
317 | C6H21O14+ | m/z+ 263 C6H15O11+···3H2O |
319 | C8H15O13+ | m/z+ 301 C8H13O12+···H2O |
335 | C6H23O15+ | m/z+ 263 C6H15O11+···4H2O |
353 | C6H25O16+ | m/z+ 263 C6H15O11+···5H2O |
357 | C10H13O14+ | m/z+ 57 C2HO2+···m/z 300 C8H12O12 |
371 | C6H27O17+ | m/z+ 263 C6H15O11+···6H2O |
375 | C10H15O15+ | m/z+ 357 C10H13O14+···H2O |
389 | C6H29O18+ | m/z+ 263 C6H15O11+···7H2O |
407 | C6H31O19+ | m/z+ 263 C6H15O11+···8H2O |
425 | C6H33O20+ | m/z+ 263 C6H15O11+···9H2O |
429 | C8H29O19+ | m/z+ 411 C8H27O18+···H2O |
443 | C6H35O21+ | m/z+ 263 C6H15O11+ ··10H2O |
461 | C6H37O22+ | m/z+ 263 C6H15O11+···11H2O |
479 | C6H39O23+ | m/z+ 263 C6H15O11+···12H2O |
497 | C6H41O24+ | m/z+ 263 C6H15O11+···13H2O |
515 | C6H43O26+ | m/z+ 263 C6H15O11+···14H2O |
525 | C7H41O25+ | m/z+ 479 C6H39O23+···CH2O2 (formic acid) |
543 | C7H43O26+ | m/z+ 525 C7H41O25+···H2O |
551 | C6H47O28+, C14H31O22+ | m/z+ 533 C6H45O27+···H2O, 7C2H4O3 (monohydrated glyoxal)···H3O+ |
561 | C7H45O27+ | m/z+ 525 C7H41O25+···2H2O |
579 | C7H47O28+ | m/z+ 525 C7H41O25+···3H2O |
597 | C7H49O29+ | m/z+ 525 C7H41O25+···4H2O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Nguyen, M.T.; Fu, Y.; Yu, X.-Y. Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol. Atmosphere 2022, 13, 188. https://doi.org/10.3390/atmos13020188
Zhang F, Nguyen MT, Fu Y, Yu X-Y. Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol. Atmosphere. 2022; 13(2):188. https://doi.org/10.3390/atmos13020188
Chicago/Turabian StyleZhang, Fei, Manh Thuong Nguyen, Yao Fu, and Xiao-Ying Yu. 2022. "Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol" Atmosphere 13, no. 2: 188. https://doi.org/10.3390/atmos13020188
APA StyleZhang, F., Nguyen, M. T., Fu, Y., & Yu, X. -Y. (2022). Interfacial Dark Aging Is an Overlooked Source of Aqueous Secondary Organic Aerosol. Atmosphere, 13(2), 188. https://doi.org/10.3390/atmos13020188