A Numerically Sensitive Study of Two Continuous Heavy-Pollution Episodes in the Southern Sichuan Basin of China
Abstract
:1. Introduction
2. Experiments
2.1. Model Description
2.2. Model Configuration and Experimental Design
3. Results and Discussions
3.1. Evaluation of Meteorology
3.2. Episodes Evaluation
3.3. PM2.5 Evaluation
3.4. Aerosol Component Evaluation
3.5. Potential Contributors to the Abnormally High Nitrate Concentration
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Xie, S. Temporal and spatial visibility trends in the Sichuan Basin, China, 1973 to 2010. Atmos. Res. 2012, 112, 25–34. [Google Scholar] [CrossRef]
- Qiao, X.; Jaffe, S.; Tang, Y.; Bresnahan, M.; Song, J. Evaluation of air quality in Chengdu, Sichuan Basin, China: Are China’s air quality standards sufficient yet? Environ. Monit. Assess. 2015, 187, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Q.; Che, H.; Zhang, R.; Gui, K.; Zhang, H. Spatial distribution and temporal variation of aerosol optical depth in the Sichuan basin, China, the recent ten years. Atmos. Environ. 2016, 147, 434–445. [Google Scholar] [CrossRef]
- Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.; Močnik, G.; Drinovec, L.; Vaupotič, J.; Miler, M.; Gosar, M.; Gregoric, A. Retrieval of vertical mass concentration distributions—Vipava valley case study. Remote Sens. 2019, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Mačak, M.B.; Stanič, S.; Bergant, K.; Gregorič, A.; Drinovec, L. Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley. Remote Sens. 2022, 14, 3482. [Google Scholar] [CrossRef]
- Zhang, X. Characteristics of the chemical components of aerosol particles in the various regions over China. Acta Meteorol. Sin. 2014, 72, 1108–1117. [Google Scholar]
- Zhang, Y.; Tian, Q.Q.; Wei, X.Y.; Zhang, S.B.; Hu, W.D.; Li, M.G. Health Benefit Evaluation for PM2.5 as Well as O3-8h Pollution Control in Chengdu, China from 2016 to 2020. Environ. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Z.; Liu, Z.; Huang, G.; Xiang, Q. The temporal evolvement characteristics of air pollution of the urban agglomeration in Southern Sichuan from 2005 to 2014. Environ. Eng. 2017, 35, 72–76, 81. [Google Scholar]
- Zhang, J.; Liu, Z.; Huang, G.; He, M. The spatial and temporal distribution and meteorological factor analysis of air pollution of the urban agglomeration in Southern Sichuan. Sichuan Environ. 2017, 36, 69–75. [Google Scholar]
- Zhao, S.; Yu, Y.; Yin, D.; Qin, D.; He, J.; Dong, L. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Sci. Total Environ. 2018, 624, 540–557. [Google Scholar] [CrossRef]
- Lin, N. The Research on Transport Law of Atmospheric Pollutant and Joint Prevention and Control of Air Pollution Technology in Sichan Province. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2015. [Google Scholar]
- Wang, L.; Xiang, W.; Chen, Y.; Xiao, T.A. Continuous pollution episode analysis in south of Sichuan urban agglomeration. J. Chengdu Univ. Inf. Technol. 2017, 32, 214–219. [Google Scholar]
- He, M.; Liu, Z.; Zhang, Y.; Zhang, Y.; Yan, Y.; Huang, G. Analyses on the spatial-temporal distribution features and causing factors of atmospheric haze in the southern city-group of Sichuan. China Environ. Sci. 2017, 37, 432–442. [Google Scholar]
- Zhang, Y. Online-coupled meteorology and chemistry models: History, current status, and outlook. Atmos. Chem. Phys. 2008, 8, 2895–2932. [Google Scholar] [CrossRef] [Green Version]
- Qin, S. Numerical Simulation Study of PM2. 5 Pollution in Fushun City Based on the WRF-CMAQ Model. Environ. Prot. Sci. 2018, 44, 80–84. [Google Scholar]
- Xiong, Y.; Xu, J.; Sun, Z.; Li, Z.; Wu, J.; Yin, X. Air pollution reduction effect evaluation based on data mining algorithm and numerical simulation technology. Acta Sci. Circumstantiate 2019, 39, 116–125. [Google Scholar]
- Fu, Y.; Li, H.; Yu, H.; Wang, X.; Zhao, F.; Zhou, D. Weather characteristics and simulation analysis on causes of air pollution in Dalian. China Environ. Sci. 2018, 38, 3639–3646. [Google Scholar]
- Tie, X.; Geng, F.; Peng, L.; Gao, W.; Zhao, C. Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model. Atmos. Environ. 2009, 43, 4289–4302. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, B.; Gao, J.; Kang, H.Q.; Yang, P.; Wang, H.L.; Li, Y.E.; Shao, P. Modeling Study of a Typical Summer Ozone Pollution Event over Yangtze River Delta. Environ. Sci. 2015, 36, 3981–3988. [Google Scholar]
- Chen, X.R.; Wang, H.C.; Lu, K.D. Simulation of organic nitrates in Pearl River Delta in 2006 and the chemical impact on ozone production. Sci. China 2018, 61, 228–238. [Google Scholar] [CrossRef]
- Fan, Q.; Lan, J.; Liu, Y.; Wang, X.; Chan, P.; Hong, Y.; Feng, Y.; Liu, Y.; Zeng, Y.; Liang, G. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China. Atmos. Environ. 2015, 122, 829–838. [Google Scholar] [CrossRef]
- Wang, W.; Liu, M.; Wang, T.; Song, Y.; Zhou, L.; Cao, J.; Hu, J.; Tang, G.; Chen, Z.; Li, Z.; et al. Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, J.; Zhang, Z.; Zhang, X.; Fan, S.; Su, J. Beijing Regional Environmental Meteorology Prediction System and Its Performance Test of PM2.5 Concentration. J. Appl. Meteorol. Sci. 2016, 27, 160–172. [Google Scholar]
- Zhou, C.H.; Gong, S.L.; Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Liu, H.L. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmos. Chem. Phys. 2008, 8, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Gong, S.L.; Zhang, X.Y.; Liu, H.L.; Xue, M.; Cao, G.L. Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model—CUACE/Aero. Tellus B Chem. Phys. Meteorol. 2012, 64, 18965. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H. On-Line Numerical Research on Atmospheric Aerosols and Their Interaction with Clouds and Precipitation. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.L.; Zhao, T.L.; Zhou, C.H.; Wang, Y.S.; Li, J.W.; Ji, D.S.; He, J.J.; Liu, H.L.; Gui, K.; et al. Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China. Geosci. Model Dev. 2021, 14, 703–718. [Google Scholar] [CrossRef]
- Nenes, A.; Pilinis, C.; Pandis, S.N. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 1999, 33, 1553–1560. [Google Scholar] [CrossRef]
- Petroff, A.; Zhang, L. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geosci. Model Dev. 2010, 3, 753–769. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L.; Barrie, L.A.; Salzen, K.; Lohmann, U.; Lesins, G.; Spacek, L.; Zhang, L.; Girard, E.; Lin, H.; Leaitch, R.; et al. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res. 2003, 108, 4007. [Google Scholar] [CrossRef]
- Zhang, L. Influences of Atmospheric Particle Source-Sink Processes on Air Quality Change in China: Coupling Atmospheric Chemistry Model WRF-CUACE and Modeling Experiments. Ph.D. Thesis, Nanjing University of Information Engineering, Nanjing, China, 2019. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.; Iacono, M.J.; Clough, S. Radiative transfer for inhomogeneous atmosphere: RRTM. J. Geophys. Res. D Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Suarez, M.J.; Ho, C.-H.; Yan, K.-T. Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models. J. Clim. 1998, 11, 202–214. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Zilitinkevich, S. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of connective flows. Trans. Ecol. Environ. 1995, 6, 53–60. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Wang, H. Radiative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res. 2010, 115, 13430. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, J.; Chen, Z.; Zhang, B. Effect simulation of Chengdu fine underlying surface information on urban meteorology. Meteorol. Mon. 2011, 37, 298–308. [Google Scholar]
- Zeng, X.M.; Wang, B.; Zhang, Y.; Song, S.; Huang, X.; Zheng, Y. Sensitivity of high-temperature weather to initial soil moisture: A case study with the WRF model. Atmos. Chem. Phys. Discuss. 2014, 14, 11665–11714. [Google Scholar] [CrossRef] [Green Version]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of WRF Model Wind Estimate Sensitivity to Physics Parameterization Choice and Terrain Representation in Andalusia (Southern Spain). J. Appl. Meteorol. Climatol. 2013, 52, 1592–1609. [Google Scholar] [CrossRef]
- Zhu, K.; Xue, M. Evaluation of WRF-based convection-permitting multi-physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing. Adv. Atmos. Sci. 2016, 33, 1240–1258. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, D.W. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, 1–22. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Exiperiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. 2008, 113, 1–29. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S. The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. J. Geophys. Res. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 1997, 102, 25847–25879. [Google Scholar]
- Li, M.; Zhang, Q.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhao, T.; Gong, S.; Kong, S.; Tang, L.; Liu, D. Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmos. Chem. Phys. 2018, 18, 2065–2079. [Google Scholar]
- RenHe, Z.; Li, Q.; Zhang, R. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci. 2013, 57, 26–35. [Google Scholar] [CrossRef]
- Ning, G. Meteorological Causes of Air Pollution in the Northwest Urban Agglomeration of Sichuan Basin in Winter and Their Numerical Simulation. Master’s Thesis, Meterology, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Liao, H. Role of the radiative effect of black carbon in simulated PM2.5 concentrations during a haze event in China. Atmos. Ocean. Sci. Lett. 2017, 7, 434–440. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wang, K.; Zheng, B.; Zhang, Q.; Wei, W. Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications. Atmos. Environ. 2016, 124, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Liao, L.; Cui, X.; Chen, F. Effects of different anthropogenic emission inventories on simulated air pollutants concentrations: A case study in Zhejiang Province. Clim. Environ. Res. 2017, 22, 519–537. [Google Scholar]
- Cheng, Y.; He, K.B.; Du, Z.Y.; Zheng, M.; Duan, F.K.; Ma, Y.L. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef]
- Carrico, C.M.; Kreidenweis, S.M.; Malm, W.C.; Day, D.E.; Lee, T.; Carrillo, J. Hygroscopic growth behavior of a carbon-dominated aerosol in yosemite national park. Atmos. Environ. 2005, 39, 1393–1404. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Guo, J.; Huang, S.; Yan, Y.; Lou, M. Unraveling the relationships between boundary layer height and PM2.5 pollution in China based on four-year radiosonde measurements. Environ. Pollut. 2018, 243, 1186–1195. [Google Scholar] [CrossRef]
- Boylan, J.W.; Russell, A.G. Pm and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Miao, R.; Chen, Q.; Zheng, Y.; Cheng, X.; Sun, Y.; Palmer, P.I.; Shrivastava, M.; Guo, J.; Zhang, Q.; Liu, Y.; et al. Model bias in simulating major chemical components of PM2.5 in China. Atmos. Chem. Phys. 2020, 20, 12265–12284. [Google Scholar] [CrossRef]
Parameterization | MET1 | MET2 |
---|---|---|
Cloud Phyiscs | Lin (Purdue) | Morrison 2-mom |
Long Wave Radiation | RRTM | RRTMG |
Short Wave Radiation | Goddard | Dudhia |
Planetary Boundary Layer | MYJ | MYJ |
Surface Layer | Eta similarity | Eta similarity |
Land Surface Flux | Noah | Noah |
Parameterization | Chem | CUACE |
---|---|---|
Aerosol physics | MOSAIC | CAM |
Gas-phase Chemistry | CBM-Z | RADM-Ⅱ |
Thermodynamic Equilibrium | ISORROPIA | ISORROPIA |
Model Mean | Observed Mean | Correlation Coefficient | RMSE | |
---|---|---|---|---|
MET1 | 10.8 | 10.6 | 0.83 ** | 1.6 |
MET2 | 9.4 | 10.6 | 0.83 ** | 1.9 |
Model Mean | Observed Mean | Correlation Coefficient | RMSE | |
---|---|---|---|---|
MET1 | 2.6 | 1.3 | 0.33 ** | 1.6 |
MET2 | 1.9 | 1.3 | 0.23 ** | 1.0 |
Model Mean | Observed Mean | Correlation Coefficient | RMSE | MFE (%) | MFB (%) | |
---|---|---|---|---|---|---|
CUACE-MET1 | 130.3 | 92.6 | 0.44 ** | 56.5 | 31.32 | 26.20 |
CUACE-MET2 | 155.7 | 0.48 ** | 79.2 | 41.74 | 38.30 | |
Chem-MET1 | 160.2 | 0.41 ** | 80.4 | 43.24 | 41.80 | |
Chem-MET2 | 192.4 | 0.46 ** | 111.6 | 55.54 | 54.88 |
Model Mean | Observed Mean | Correlation Coefficient | RMSE | MFE (%) | MFB (%) | |
---|---|---|---|---|---|---|
CUACE-MET1 | 116.0 | 120.1 | 0.30 ** | 54.0 | 27.79 | 2.60 |
CUACE-MET2 | 131.6 | 0.24 ** | 63.0 | 32.07 | 10.15 | |
Chem-MET1 | 144.8 | 0.24 ** | 64.7 | 31.96 | 17.90 | |
Chem-MET2 | 169.2 | 0.19 ** | 85.8 | 38.27 | 28.00 |
Correlation Coefficient | Chem-MET1 | Chem-MET2 | CUACE-MET1 | CUACE-MET2 |
---|---|---|---|---|
Nitrate and sulfate | 0.91 ** | 0.92 ** | 0.88 ** | 0.86 ** |
Nitrate and ammonium | 1.00 ** | 1.00 ** | 0.99 ** | 0.98 ** |
Sulfate and ammonium | 0.93 ** | 0.95 ** | 0.92 ** | 0.94 ** |
Correlation Coefficient | Chem-MET1 | Chem-MET2 | CUACE-MET1 | CUACE-MET2 |
---|---|---|---|---|
Nitrate and sulfate | 0.09 ** | −0.13 ** | −0.20 ** | −0.55 ** |
Nitrate and ammonium | 0.91 ** | 0.80 ** | 0.57 ** | 0.11 ** |
Sulfate and ammonium | 0.51 ** | 0.50 ** | 0.64 ** | 0.75 ** |
Correlation Coefficient | Chem-MET1 | Chem-MET2 | CUACE-MET1 | CUACE-MET2 |
---|---|---|---|---|
Nitrate and NO2 | −0.14 ** | −0.12 ** | −0.45 ** | −0.45 ** |
Sulfate and SO2 | 0.20 ** | 0.30 ** | 0.58 ** | 0.71 ** |
Correlation Coefficient | Chem-MET1 | Chem-MET2 | CUACE-MET1 | CUACE-MET2 |
---|---|---|---|---|
NH3-RH | 0.667 ** | 0.329 ** | 0.680 ** | 0.317 ** |
NH3-T2 | −0.537 ** | 0.068 ** | −0.573 ** | −0.124 ** |
HNO3-RH | −0.721 ** | −0.123 ** | −0.211 ** | −0.123 ** |
HNO3-T2 | 0.791 ** | 0.057 ** | 0.186 ** | 0.057 ** |
NH3-HNO3 | −0.652 ** | −0.110 ** | −0.266 ** | −0.120 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhou, C.; Zhang, L.; Wang, S. A Numerically Sensitive Study of Two Continuous Heavy-Pollution Episodes in the Southern Sichuan Basin of China. Atmosphere 2022, 13, 1771. https://doi.org/10.3390/atmos13111771
Chen L, Zhou C, Zhang L, Wang S. A Numerically Sensitive Study of Two Continuous Heavy-Pollution Episodes in the Southern Sichuan Basin of China. Atmosphere. 2022; 13(11):1771. https://doi.org/10.3390/atmos13111771
Chicago/Turabian StyleChen, Li, Chunhong Zhou, Lei Zhang, and Shigong Wang. 2022. "A Numerically Sensitive Study of Two Continuous Heavy-Pollution Episodes in the Southern Sichuan Basin of China" Atmosphere 13, no. 11: 1771. https://doi.org/10.3390/atmos13111771
APA StyleChen, L., Zhou, C., Zhang, L., & Wang, S. (2022). A Numerically Sensitive Study of Two Continuous Heavy-Pollution Episodes in the Southern Sichuan Basin of China. Atmosphere, 13(11), 1771. https://doi.org/10.3390/atmos13111771