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Abstract: To explore the causes of pollution formation and changes in the complex topography
of the Sichuan Basin, China, and improve the comprehensive simulation capability of pollution
models, we use two online coupling models, WRF/Chem and WRF/CUACE, to simulate two
heavy pollution episode that successively occurred in the southern part of Sichuan Province from
15 December 2016 to 11 January 2017 in this paper. Additionally, two sets of meteorological physics
parameterization schemes MET1 and MET2 are designed, and four groups of experiments are carried
out. The results suggest that the two models are good at simulating the static weather parameters
such as temperature, low speed of winds and boundary layer height. The four groups of tests can
accurately simulate the beginning, maintenance and turning point of the two pollution episodes’
life cycles. CUACE shows better performance in terms of higher correlation coefficients and lower
errors in most of the particles and particulate components evaluations. It also performs better in the
competitive mechanism of sulfate and nitrate against ammonium in the thermodynamic equilibrium
mechanism. In addition, the evaluation of PM2.5 and the component simulation show that CUACE is
more capable of simulating the mechanisms of heavy pollutions in southern Sichuan. Meanwhile,
MET2 scheme is more appropriate for the simulation than MET1 dose. Based on the simulated
concentrations of components and their precursors, the models overestimate the conversion of NO2

to nitrate but underestimate the conversion of SO2 to sulfate, which is the essential cause of the
general overestimation of nitrate. Therefore, reducing the overestimation of nitrate is one major target
for future model improvement.

Keywords: pollution episode; aerosol; Southern Sichuan Basin; CUACE; WRF/Chem

1. Introduction

The Sichuan Basin, surrounded by high mountains, lies at the east edge of the Tibetan
Plateau. With complex terrain, the thermodynamic and dynamic condition of atmosphere
in the basin is very special and easy for static weather conditions characterized by weak
wind speed and high relative humidity, to form. Such weather conditions are not conducive
to the diffusion of pollutants [1], often causing serious pollution problems [2,3]. Affected
by terrain factors, the vertical distribution and diffusion mechanisms of pollutants are more
complex, and the observation is more difficult [4,5]. Thus, the Sichuan Basin has become
one of the four major polluted regions in China [6]. Serious pollution problems, especially
PM2.5 and O3, have an impact on people’s health [7]. The area is close to Tibet. The nature
of the air pollution and how it is happened are very important for air pollution control
and also for the interactions between the air pollution and the weather/climate in the
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region. The city cluster of southern Sichuan is located in the southern part of the Sichuan
Basin, consisting of five prefecture-level cities, i.e., Zigong, Neijiang, Luzhou, Leshan, and
Yibin. The visibility in this region has become very poor, close to or below 10 km all year
round. Statistical analysis showed that the pollution in this area is mainly caused by high
concentrations of PM2.5 or ozone [8–10]. The airflow enters the basin from the north and
the east, and the pollutants spread to the southwest and then to the south along with the
airflow, which tends to cause heavy pollution [11–13]. However, all the above findings were
mainly based on statistical studies, and there are few in-depth studies on the interaction
mechanism between heavy pollution and weather in southern Sichuan.

Numerical simulations can show good temporal and spatial continuity and pin down
mechanizes behind them with variable physical and chemical schemes selected and eval-
uations [14]. The contributions of varying emission sources to PM2.5 in Dalian, Liaoning
Province, in 2016 and the Beijing–Tianjin–Hebei region in 2018 were studied [15,16]. In
terms of aerosol composition, simulation results revealed that nitrate is the main com-
ponent of aerosols in the winter air pollution in Dalian [17]. In the Yangtze River Delta,
several studies have used WRF-Chem to analyze the changes in ozone during the pol-
lution process [18,19]. Fan et al. perform a numerical simulation analysis for three air
pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the
third-generation air quality modeling system Models-3/CMAQ [20]. Chen et al. focused
on the simulation of organic nitrates through a box model coupled with RACM2 (Regional
Atmospheric Chemistry Mechanism, version 2) [21]. Wang et al. used WRF-Chem to inves-
tigate the sulfate formation mechanism [22]. The chemical schemes used in these studies
were different [23], and few studies have been conducted on the changes of pollution
and the effect of pollution on weather and climate in the heavily polluted Sichuan Basin,
especially in southern Sichuan.

In this paper, we will use the WRF/Chem&CUACE to study two long-lasting pollu-
tion episodes in the southern Sichuan Basin from 15 December 2016 to 11 January 2017.
Additionally, to pin down the mechanics of the heavy pollution in southern Sichuan Basin,
the simulation capacity of the new comprehensive WRF/Chem&CUACE will be also
investigated for its further improvement.

2. Experiments
2.1. Model Description

CMA Unified Atmospheric Chemistry Environment (CUACE) is an online chemical
weather numerical prediction system developed by China Meteorological Administration
(CMA) [24–26]. CUACE has been online coupled into version 3 of the Weather Research
and Forecasting (WRF) community model that simulates trace gases and particulates simul-
taneously with meteorological fields [27], to build WRF/CUACE [28]. CUACE can simulate
seven components of dust, black carbon (BC), organic carbon (OC), sulfate, nitrate, ammo-
nium and sea salt. The aerosol microphysical processes include nucleation, hygroscopic
growth, coagulation, condensation, and dry/wet deposition. The equilibrium scheme
ISORROPIA (a new thermodynamic equilibrium model for multiphase multicomponent
inorganic aerosols) [29,30] is applied to calculate nitrate and ammonium. The particle dry-
deposition scheme developed by Petroff et al. [31] was introduced in the coupling model
WRF-CUACE, and the distribution of the vegetation leaf area index (LAI) was improved
by using MODIS data [32]. In CUACE, the heterogeneous chemical processes of SO2, NO2
and O3 on the surfaces of aerosols are taken into account, and the simulation effect of gases
and secondary aerosols such as sulfate and nitrate is improved [33]. The aerosol mass spec-
trum is divided into 12 bins: 0.01–0.02, 0.02–0.04, 0.04–0.08, 0.08–0.16, 0.16–0.32, 0.32–0.64,
0.64–1.28, 1.28–2.56, 2.56–5.12, 5.12–10.24 and 10.24–20.48 µm [32]. CUACE’s sectional
aerosol modules are fully online coupled into the WRF/Chem model in V3.8.1 [27] and
are linked to the gas-phase chemical and thermodynamic equilibrium schemes, including
ISORROPIA in WRF/Chem, to calculate the generation rate of secondary aerosols and the
unstable aerosol components of nitrate and ammonium. Both models handle pollutant
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transport through the positive-definite advection scheme and turbulent diffusion model of
WRF model.

2.2. Model Configuration and Experimental Design

The simulation area is set to be triple nesting (Figure 1), which has three domains and
just covers the southern Sichuan region. Domain 1 has the number of 120 × 108 grids with
the grid length of 54 km. Domain 2 has 112 × 97 grids with grid distance being 18 km.
In domain 3, meanwhile, the grid number is 124 × 112, the grid distance is 6 km and the
latitude and longitude of the center are (29.74◦ N, 105.28◦ E). There are 32 layers in the
vertical direction to the top of 50 hPa, and the integration time step is 300 s.

Figure 1. Distribution diagram of simulation area settings (D1: Domain 1; D2: Domain 2; D3: Domain
3; The shaded map is for terrain height from sea level); D3 also includes the locations of Chengdu,
Leshan, Luzhou, Neijiang, Yibin and Zigong.

The simulation period is from 15 December 2016 to 11 January 2017, during which two
persistent heavy-pollution events occurred in southern Sichuan. The first event broke out
on 15 December 2016, peaked on the 21st and ended on the 26th, while the second started
on 27 December 2016, reached its peak on 4 January 2017 and died out on 11 January 2017.
During the two pollution processes, the growth, maintenance and reduction of pollutants
were very significant, and the PM2.5 concentration was as high as 338 µg m−3 (Chengdu).
The concentration of pollutants decreased due to rainfall but then increased again due to
temperature inversion.

In order to avoid the interference of the initial accumulation of pollutant concentration,
there is a one-week spin-up period in the simulation.

MET1 and MET2 (Table 1) are two sets of meteorological schemes set to study the sensi-
tivity of pollution to meteorology. We hope to obtain a more suitable meteorological scheme
for the Sichuan Basin by this method and provide a basis for the detailed comparative study
of meteorological schemes in the future. In MET1 is the reference scheme combination in
Zhang et al. [33]: The cloud physics scheme is Lin (Purdue) [34], the long-wave radiation
scheme is RRTM [31], the short-wave radiation scheme is Goddard [35,36], the boundary
layer scheme is MYJ [37], the near-surface layer scheme is eta similarity [38], and the land-
surface scheme is Noah [39]. MET2 is set by reference to the combinatorial optimization of
meteorological process parameterization used by multiple studies in China [40–44]. The
difference between MET2 and MET1 is in the microphysics and the long- and short-wave
radiation. In MET2, the cloud physics scheme is Morrison 2 [45], the long-wave radiation
scheme is RRTMG [46], and the short-wave radiation scheme is Dudhia [47].
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Table 1. Parameterized combination of WRF meteorological processes.

Parameterization MET1 MET2

Cloud Phyiscs Lin (Purdue) Morrison 2-mom

Long Wave Radiation RRTM RRTMG

Short Wave Radiation Goddard Dudhia

Planetary Boundary Layer MYJ MYJ

Surface Layer Eta similarity Eta similarity

Land Surface Flux Noah Noah

CUACE and Chem are two sets of chemistry schemes for WRF/Chem and WRF/CUACE
(Table 2). In Chem, the aerosol mechanism is MOSAIC with eight size bins [48]; the gaseous
chemical scheme is CBM-Z [49]; CUACE uses the sectional aerosol scheme described in
Section 2.1, and the gaseous chemical scheme is RADM-II [50,51]. Both WRF/Chem and
WRF/CUACE adopt the ISORROPIA model [29,30].

Table 2. Chemical processes of WRF/Chem and WRF/CUACE.

Parameterization Chem CUACE

Aerosol physics MOSAIC CAM

Gas-phase Chemistry CBM-Z RADM-II

Thermodynamic Equilibrium ISORROPIA ISORROPIA

The emission source of the model is from the emission source list of MEIC of Ts-
inghua University in 2016 (http://www.meicmodel.org/dataset-mix.html (accessed on
1 July 2019)). It is an Asian source emission inventory developed for the third phase of the
East Asian model comparison program (MICs Asia III) and the United Nations hemispheric
air pollution transfer program (HTAP) [52]. The inventory provides monthly gridded
emission data with 0.25◦ spatial resolution for five emission sectors (power, industry, civil,
transportation, agriculture) consisting of the emission intensities of sulfur dioxide (SO2),
nitrogen oxides (NOx), carbon monoxide (CO), NH3, BC, OC, non-methane volatile organic
compounds (NMVOCs), PM2.5 and PM10 from the five trades of power plants, industry,
transportation, residents’ living and agriculture [53]. We use this source to represent the
emission scenarios of the Chinese mainland during the study period. The FNL reanaly-
sis data co-produced by NCEP (National Centers for Environmental Prediction)/NCAR
(National Center for Atmospheric Research) are employed as the initial meteorological
conditions and boundary conditions of the model, with spatial resolution of 1◦ × 1◦ and
temporal resolution of 6 h (https://rda.ucar.edu/ (accessed on 1 March 2019)). The meteo-
rological observation data are the CMA conventional surface observations, including wind
speed and direction, temperature, relative humidity, hourly rainfall, etc., and the output
interval is 3 h. The hourly concentration data of surface pollutants are obtained from the
website of the Ministry of Ecology and Environment of the People’s Republic of China
(http://www.mee.gov.cn/xxgk2018 (accessed on 10 September 2018)). Data includes 6
standard air pollutants (PM2.5, PM10, SO2, NO2, O3 and CO). Each city has multiple moni-
toring stations, and the arithmetic average of the hourly concentrations of air pollutants
monitored by all national control stations in the city is taken as the hourly concentration of
pollutants in the city.

The experiment is divided into four groups, namely WRF/Chem-MET1, WRF/Chem-
MET2, WRF/CUACE-MET1 and WRF/CUACE-MET2 (hereinafter referred to as Chem-
MET1, Chem-MET2, CUACE-MET1 and CUACE -MET2, respectively).

http://www.meicmodel.org/dataset-mix.html
https://rda.ucar.edu/
http://www.mee.gov.cn/xxgk2018
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3. Results and Discussions
3.1. Evaluation of Meteorology

Meteorological conditions are very important for pollution accumulation and diffusion
and can contribute to 2/3 of the causes of heavy pollutions [54]. Studies have shown that
elements like wind speed, temperature and humidity are more difficult to simulate correctly
in the near surface layer than at the high level even though they are more important for
pollutant variation [25]. Therefore, the evaluation of this study focuses mostly on the
near-surface meteorological elements (Tables 3 and 4).

Table 3. Statistical analysis of 2 m temperature (unit: °C).

Model Mean Observed Mean Correlation Coefficient RMSE

MET1 10.8 10.6 0.83 ** 1.6

MET2 9.4 10.6 0.83 ** 1.9
Note: ** means having passed the significance test of 0.01.

Table 4. Statistical analysis of 10 m wind speed simulation results (unit: m s−1).

Model Mean Observed Mean Correlation Coefficient RMSE

MET1 2.6 1.3 0.33 ** 1.6

MET2 1.9 1.3 0.23 ** 1.0
Note: ** means having passed the significance test of 0.01.

MET1 and MET2 show good simulation results for the 2 m temperature, with the
correlation coefficients both reaching 0.83 and RMSE being less than 2 ◦C (Table 3). The
2 m temperature are slightly overestimated by MET1 but slightly underestimated by MET2.
RMSE is slightly less in MET1 than that in MET2.

The correlation coefficient of both MET1 and MET2 are not high, which reflects the
complexity of the boundary layer wind speed simulation (Table 4). The RMSE in MET2 is
much lower than that of MET1, indicating a better ability of MET2 to simulate low wind
speed in static weather.

The simulation accuracy of temperature and wind speed in this study is close to or
better than that of similar research results. For example, Ning et al. once used WRF/Chem
to simulate a winter pollution episode in Chengdu, and their results demonstrated that the
correlation coefficients between the simulation and observation of 2 m temperature and 10
m wind speed were 0.75 and 0.22, respectively, and the mean of 10 m wind speed simulation
was significantly higher than the observed value [55]. Several researchers have also found
that the near-surface wind speeds by WRF/Chem are generally overestimated [56–59].

Because the relative humidity is very important for the hygroscopic growth of
aerosols [60,61], we compared the simulation and observation results of relative humidity
(Figure 2). The results show that: observation > MET2 > MET1. The change trend in the
three curves is relatively consistent, but the observed values are higher regardless of the
peak or valley. Especially near 27 December 2016 (corresponding to the low pollutant
concentrations), the relative humidity of MET1 and MET2 is below 50%, while the observed
value is above 60%.

The lower planetary boundary layer height (PBLH) is more beneficial to the accumula-
tion of pollutants, promoting the formation of heavy pollution. Therefore, the PBLH is also
an important parameter for the static condition of the near-surface atmosphere. Due to the
lack of observational data, it is difficult to obtain accurate PBLH observations. Previous
studies show that PBLH is generally less than 1 km during heavy pollution in the Sichuan
Basin using the fine-resolution sounding measurements from 2014 to 2017 [62]. It shows
that PBLH by MET2 is mostly near or less than 1 km and obviously lower than that by
MET1, which is larger than 1 km during the two episodes (Figure 3). Therefore, the result
for MET2 is closer to the actual boundary layer height during a heavy-pollution period
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than the result of MET1. It also shows that the diurnal variations of PBLH in both MET1
and MET2. This is because of the arbitrary regime division of the unstable and stable PBL
schemes in meteorological models [25].

Figure 2. Time series of relative humidity (RH, unit: %) in simulation results of MET1 (black solid
line), MET2 (grey dot dash line) and Observed (black dash line).

Figure 3. Time series of boundary layer height (PBLH, unit: m) in simulation results of MET1 (black
solid line) and MET2 (red solid line).

To sum up, both MET1 and MET2 can simulate the static weather pattern, while MET2
is a little superior to MET1 in terms of near-surface low wind speed and low PBLH.

3.2. Episodes Evaluation

Figure 4 shows the simulated and observed PM2.5 and PM10 concentrations averaged
from the selected five cities in Southern Sichuan, and the simulated and observed ratios
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of PM2.5 in PM10 during the two pollution episodes. The simulated PM2.5 concentration
is averaged for the four tests and the five cities. According to the observation, the life
cycle of the start, maintenance and end of the two pollution episodes are very obvious,
during which the peak values of PM2.5 are 156.2 µg m−3 and 197.4 µg m−3, and the peak
values of PM10 are 200.4 µg m−3 and 247.4 µg m−3, respectively. During the two episodes,
the ratio of PM2.5 in PM10 is generally more than 70% except in the pollution transition
period in which the value drops to near 55%, which demonstrates that finer particles are
the main particulate pollutant during the polluted episodes. The simulated results also
show the life cycles of the start, development and dissipation of the two pollution events
(Figure 4). The simulated peak concentrations of pollutants are relatively higher than the
observed values, and the proportions of PM2.5 in PM10 remain stable at more than 90%,
obviously higher than the observed values. This suggests that the model can simulated the
pollution episodes in terms of the life circle but it still has bias for the variations during the
maintaining period and for the coarse particles with diameter between 2.5 µm and 10 µm.

Figure 4. Time series of simulated and observed hourly mean PM2.5 concentrations (µg m−3) and
ration of PM2.5 in PM10 (unit:%) of the five cities in Southern Sichuan from 15 December 2016 to
11 January 2017. The solid black line is for Obs-PM2.5, the dash black line is for the ratio of observed
PM2.5 in PM10. The solid red line is for Model-PM2.5, the dash red line is for the ratio of simulated
PM2.5 in PM10.

Here we compare the time series of observed and simulated PM2.5 concentrations of
the five cities for each individual test (Figure 5). It shows that each test has good capability
for the simulation of life cycle these two episodes. The simulation results also reflect well
the start and end times of the two heavy pollution episodes and the changing trend of PM2.5
concentration growth, accumulation and dissipation of all the four tests. It also shows that
the variation trends of PM2.5 shown by the four schemes are very agreed.

In the Pollution Episode I the observed PM2.5 concentration presents the pattern of
rising, slightly falling, rising again (not exceeding the first peak), and then falling again
till the end of the pollution episode, but the simulation shows the pattern of rising, daily
fluctuating slightly, and falling rapidly to the end of the pollution episode. It has not
so monotonous increase and decrease as the observed. For the Pollution Episode II, the
observed PM2.5 concentration rises and then fluctuates down till the end of the pollution
episode, while the simulation results show that it rises, clearly descends for a relative long
time, then rises again (slightly higher than the previous peak) and finally rapidly goes
to the end of the pollution episode, still having not so clearly momentous increase and
decrease as the observed.
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Figure 5. Time series of hourly the 24 h averages of the observed PM2.5 concentration (unit: µg m−3)
from 15 December 2016 to 11 January 2017 (solid black line) and simulated PM2.5 concentration from
the four groups of tests (red dotted line: Chem-MET1; red solid line: Chem-MET2; blue dotted line:
CUACE-MET1; blue solid line: CUACE-MET2) (unit: µg m−3).

By analyzing the precipitation(Figure 6), we found that the long-time descending
during the Pollution Episode II is due to the abnormal precipitation from the model,
whose result shows that MET1 and MET2 both predicted the precipitation during the
long-time descending at all five stations. During the period from 31 December 2016 to
1 January 2017 (Figure 7), the simulated precipitation of MET1 and MET2 is higher than
the observation. In these three days, the simulation results show that it rains every day,
but the observation is only two days, and the observed rainfall is smaller. This shows
that the simulated precipitation is much more and the duration is much longer. Therefore,
the underestimation of PM2.5 in the continuous phase of Pollution Episode II is mainly
caused by the large abnormal wet removal. On the other hand, the smaller rainfall can not
effectively clear the pollutants, and the pollution is still serious after the rainfall.

Figure 6. Histogram of hourly the 24 h averages of the observed precipitation (unit: mm) from
15 December 2016 to 11 January 2017 (white bar) and simulated precipitation of MET1 (black bar)
and MET2 (grey bar).
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Figure 7. Histogram of hourly the 24 h averages of the observed precipitation (unit: mm) from
29 December 2016 to 02 January 2017 (white bar) and simulated precipitation of MET1 (black bar)
and MET2 (grey bar).

3.3. PM2.5 Evaluation

The statistical analyses of the two pollution episodes in the four tests are given in
Tables 5 and 6. Except for the average value of CUACE-MET1 in the Pollution Episode
II, which is slightly smaller and very close to the observed value, the mean PM2.5 con-
centrations of the other three are obviously larger than the observed value. In the both
processes, the correlation coefficient of MET2s with the same chemical processes is higher
than that of MET1s, and the correlation coefficient of CUACEs with the same meteoro-
logical processes is higher than that of Chems. The correlation coefficients of each test in
the Pollution Episode I are above 0.4, with the highest reaching 0.48 in CUACE-MET2,
and the correlation is better than that of the Pollution episode II. The RMSE of MET1s
in both processes is apparently smaller than that of MET2s, and of CUACEs is greatly
smaller than that of Chems. In the study by James W. et al. [63], it has been proposed
that a model performance goal has been met when both the mean fractional error (MFE)
and the mean fractional bias (MFB) are less than or equal to +50% and ±30%, respectively.
Additionally, the model performance criteria has been met when both the MFE ≤ +75%
and MFB ≤ ±60%. In the Pollution Episode I, only CUACE-MET1 had MFE less than 50%
and MFB less than 30%. The MFE and MFB of the four groups of experiments were all less
than 75% and 60%, respectively. In the Pollution Episode II, the MFE and MFB of the four
groups of experiments were all less than 50% and 30%, respectively.

Table 5. Statistical analysis of PM2.5 concentrations of four tests in the Pollution Episode I in
15–26 December 2016 (unit: µg m−3).

Model Mean Observed Mean Correlation Coefficient RMSE MFE (%) MFB (%)

CUACE-MET1 130.3 92.6 0.44 ** 56.5 31.32 26.20

CUACE-MET2 155.7 0.48 ** 79.2 41.74 38.30

Chem-MET1 160.2 0.41 ** 80.4 43.24 41.80

Chem-MET2 192.4 0.46 ** 111.6 55.54 54.88

Note: ** means having passed the significance test of 0.01.
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Table 6. Statistical analysis of PM2.5 concentrations of four tests in the Pollution Episode II from
27 December 2016 to 11 January 2017) (unit: µg m−3).

Model Mean Observed Mean Correlation Coefficient RMSE MFE (%) MFB (%)

CUACE-MET1 116.0 120.1 0.30 ** 54.0 27.79 2.60

CUACE-MET2 131.6 0.24 ** 63.0 32.07 10.15

Chem-MET1 144.8 0.24 ** 64.7 31.96 17.90

Chem-MET2 169.2 0.19 ** 85.8 38.27 28.00

Note: ** means having passed the significance test of 0.01.

It can be seen from the above simulation results that CUACE performs better than
Chem interns of both correlation coefficients and RMSE. The analysis results of Section 3.1
show that MET2 performs better for static weather than that of MET1. But for the point of
PM2.5 concentration, the two schemes have no clear superiority for one or another. This
reveals again that the complex interactions between the meteorology and pollution.

3.4. Aerosol Component Evaluation

We also analysis the temporal variations of different aerosol components in each test
(Figure 8). It indicates that the time variation of each component is very consistent with the
time variation of PM2.5 in Figure 5. The results again denote that the main factors affecting
the quick changes of aerosol components are the changing meteorological conditions in
short time period. Both in the time series of Figures 4 and 5 and the statistics results
in Tables 5 and 6 shows the highly overestimated concentration of PM2.5 simulated. In
Figure 8, we see the obviously high concentrations of nitrate in all the four tests. The
concentration proportion of each component also shows this phenomenon, the proportion
of nitrate is the highest, fluctuating between 40% and 50% in all of the four groups of tests
(Figure 9). The ratios of ammonium is accounting for 15–18%. The ratio of OC is between
8% and 18%, and the minimum proportion is BC, around 5%. The average proportion of
sulfates is 7.5%. These results of sulfate, OC and BC are consistent with the observations
from Atmospheric Research Laboratory of Chengdu Academy of Environmental Sciences,
and National Air Pollution Control and Associated Center, which means that ammonium
accounts for 20–23%, BC 3%, OC 11–12%, sulfate 7–8%. But for nitrate, the observation only
accounts for 27–33%, with very scarcely value reaching 40% which indicates that nitrate
is clearly overestimated. This is consistent with the unified overestimations of nitrate in
China in Miao et al.’s work [64].

Figure 8. Cont.
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Figure 8. Time series of daily averages of the concentrations of ammonium (blue solid line), BC
(purple solid line), OC (green solid line), sulfate (blue solid line), and nitrate (red solid line) by
Chem-MET1 (a), Chem-MET2 (b), CUACE-MET1 (c) and CUACE-MET2 (d) (unit: µg m−3).

Figure 9. Hourly time series of concentration ratios of ion ammonium salt (blue solid line), BC (purple
solid line), OC (green solid line), sulfate (blue solid line), and nitrate (red solid line) simulated by
Chem-MET1 (a), Chem-MET2 (b), CUACE-MET1 (c) and CUACE-MET2 (d) (unit: µg m−3) (unit: %).

3.5. Potential Contributors to the Abnormally High Nitrate Concentration

Nitrate is thermodynamically unstable, whose concentration is affected by multi-
ple elements like atmospheric conditions, concentrations of precursors, sulfate and ni-
trate, etc. Therefore, we also analyze its relations among nitrate, sulfate and ammonium
(Tables 7 and 8).
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Table 7. Correlations among nitrate, sulfate and ammonium concentrations in the four groups of
test results.

Correlation Coefficient Chem-MET1 Chem-MET2 CUACE-MET1 CUACE-MET2

Nitrate and sulfate 0.91 ** 0.92 ** 0.88 ** 0.86 **

Nitrate and ammonium 1.00 ** 1.00 ** 0.99 ** 0.98 **

Sulfate and ammonium 0.93 ** 0.95 ** 0.92 ** 0.94 **
Note: ** means having passed the significance test of 0.01.

Table 8. Correlations of nitrate, sulfate and ammonium in the proportion of PM2.5 in the four tests.

Correlation Coefficient Chem-MET1 Chem-MET2 CUACE-MET1 CUACE-MET2

Nitrate and sulfate 0.09 ** −0.13 ** −0.20 ** −0.55 **

Nitrate and ammonium 0.91 ** 0.80 ** 0.57 ** 0.11 **

Sulfate and ammonium 0.51 ** 0.50 ** 0.64 ** 0.75 **
Note: ** means having passed the significance test of 0.01.

Table 7 illustrates significant positive correlations among nitrate, sulfate and ammo-
nium in all the four tests. This is consistent with the results of Section 3.3 and again explains
that the change of components is mainly controlled by the change of meteorological el-
ements. The correlation among the ratios of the three components in PM2.5 is further
analyzed to exclude the influence of meteorological factors (Table 8). The concentration
ratios of nitrate and sulfate are negatively correlated, but those of sulfate and ammonium,
nitrate and ammonium are all obviously positively correlated. Sulfate, nitrate, and ammo-
nium exist thermodynamically in the form of ammonium sulfate and ammonium nitrate in
the atmosphere, so sulfate and nitrate have to compete to get ammonium which is depicted
by their negative correlations in Table 8. Nitrate and sulfate in Chems is poorly correlated
with the value of 0.09 and −0.13 in Chem-MET1 and Chem-MET2, indicating that Chem
is insufficient for the competition mechanism of nitrate and sulfate. The correlation be-
tween nitrate and sulfate in CUACE is −0.20 (CUACE-MET1) and −0.55 (CUACE-MET2)
respectively. This shows that CUACE pays more attention to the competitive mechanism
of nitrate and sulfate. CUACE-MET2 > CUACE-MET1 also shows that different meteoro-
logical processes will affect the reaction and transformation between chemical substances.
For the correlation between nitrate and ammonium, the experimental result shows that
Chem-MET1 > Chem-MET2 > CUACE-MET1 > CUACE-MET2. For the correlation between
sulfate and ammonium, the experimental results show that Chem-MET1 ≈ Chem-MET2 <
CUACE-MET1 < CUACE-MET2, is contrary to the order of correlation between nitrate and
ammonium in the four groups. The two chemical models are much more stable for sulfate
ammonium simulation, among which the CUACE correlation is better.

NO2 and SO2 are the precursor materials of sulfate and nitrate production, and their
concentration changes have a great impact on the concentration of sulfate and sulfate in
the atmosphere [22]. Therefore, we also analyzed the concentration of NO2 and SO2. The
concentration of NO2 in the four tests is obviously lower than the observed ones, indicating
that the model overestimates the conversion of NO2 to nitrate which is the cause of the
high nitrate concentrations (Figure 10a). Comparatively, the simulation results of SO2 in
the four groups are higher than those observed, but the simulated sulfate is lower (average
proportion is 7.5%), which suggests that the model have still underestimated the conversion
of SO2 to sulfate (Figure 10b).
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Figure 10. Time series of daily averaged observed (black solid lines) and simulated NO2 concentra-
tions (a), observed and simulated SO2 concentrations (b) of the four tests (red dotted line: Chem-
MET1; red solid line: Chem-MET2; blue dotted line: CUACE-MET1; blue solid line: CUACE-MET2).
(unit: µg m−3).

This is also true in statistical results in Table 9. It can be seen that nitrate and NO2 are
negatively correlated while sulfate and SO2 are positively correlated in the four tests. It also
shows that more NO2 is converted into nitrate and less left to be accumulated, while some
SO2 can still accumulate and other convert into sulfate in heavy pollution condition. The
negative correlation between nitrate and NO2 is more noticeable in CUACE than in Chem,
in MET2 than in MET1, so for the positive correlations. Hence, the conversion relationship
between CUACE’s sulfate and nitrate and their precursors is more reasonable.

Table 9. Correlation Coefficients between nitrate and NO2, sulfate and SO2 in the four tests.

Correlation Coefficient Chem-MET1 Chem-MET2 CUACE-MET1 CUACE-MET2

Nitrate and NO2 −0.14 ** −0.12 ** −0.45 ** −0.45 **

Sulfate and SO2 0.20 ** 0.30 ** 0.58 ** 0.71 **
Note: ** means having passed the significance test of 0.01.

We analyzed the correlation of ammonia(NH3), nitric acid(HNO3), 2m temperature(T2)
and relative humidity(RH). The results(Table 10) showed that NH3 was generally posi-
tively correlated with RH and negatively correlated with T2. On the contrary, HNO3 is
negatively correlated with RH and positively correlated with T2. The general negative
correlation between ammonia and nitric acid is consistent with the fact that they react to
form ammonium nitrate.

Table 10. Correlation coefficient among ammonia(NH3), nitric acid(HNO3), 2m temperature(T2) and
relative humidity(RH) in the four tests.

Correlation Coefficient Chem-MET1 Chem-MET2 CUACE-MET1 CUACE-MET2

NH3-RH 0.667 ** 0.329 ** 0.680 ** 0.317 **

NH3-T2 −0.537 ** 0.068 ** −0.573 ** −0.124 **

HNO3-RH −0.721 ** −0.123 ** −0.211 ** −0.123 **

HNO3-T2 0.791 ** 0.057 ** 0.186 ** 0.057 **

NH3-HNO3 −0.652 ** −0.110 ** −0.266 ** −0.120 **
Note: ** means having passed the significance test of 0.01.

The results of the four experiments show that each correlation coefficient of Chem-
MET1 is the largest among the four experiments. This shows that Chem-MET1 pays the
most attention to the correlation between these factors. For the two groups of experiments
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using MET2, whether Chem or CUACE, the experimental results are relatively similar, and
the correlation coefficient is small. By comparing the two groups of experiments using
MET1, we found that CUACE and Chem had the same results for the correlation between
NH3 and meteorological elements, but there was a significant gap between CUACE and
Chem for the correlation between HNO3 and meteorological elements. This shows that the
influence of meteorological elements on nitric acid in Chem is more obvious.

4. Summary and Conclusions

The online air quality models WRF/Chem and WRF/CUACE have been used to
simulate the two heavy pollution episodes in one month that occurred in the Southern
Sichuan basin, one of the four major pollution zones in China, from 15 December 2016
to 11 January 2017. The driving weather model WRF has a good simulation effect of 2 m
temperature in Southern Sichuan, which is close to the observation with good correlation
coefficient and small error. It can also simulate well the low wind speed and boundary layer
height, which are important variables of static weather, providing a good meteorological
background for model to simulate pollution episodes.

Both Chem and CUACE have accurately simulated the life cycle of the two pollution
events in terms of the onset, maintenance and dissipating phase. In the four tests, the
variation trends of the PM2.5 concentration, which is an important indicator of haze-fog,
and the concentration of each component are in line with the development of pollution
episode. The proportion of each component in PM2.5 is very close to the observation except
the extraordinary overestimated nitrate. The overestimation of nitrate has been pinned
down in this paper and it is due to the model overestimation of the conversion of NO2 to
nitrate and underestimations of the conversion of SO2 to sulfate.

Meteorological parameterizations all have important impacts on the model simulation
results. MET2 can simulate stronger atmospheric static weather conditions than MET1
dose. It also shows a relatively better performance than MET1 in terms of higher correlation
coefficients and lower errors in most of the particles and particulate components evaluations.
CUACE also shows a relatively better performance in terms of higher correlation coefficients
and lower errors in most of the particles and particulate components evaluations. It also
performs better in the competitive mechanism of sulfate and nitrate against ammonium in
the thermodynamic equilibrium mechanism. However, the negative correlation between
the two is not obvious in the results of Chem model. Then, CUACE-MET2 performs the
best in all the four tests.

The static weather is very important condition for pollutants to be accumulated and
is also the most complex and difficult weather conditions to be accurately simulated due
to the models limitation in the near surface of the atmosphere. More light should shine
into this hard core of pollutions. And nitrate is the main source of deviations in aerosol
simulation at present in many air pollutions models. With the increase of the national
emission reduction mechanism in China, the proportion of nitrate in particulate matters is
getting higher and higher and will be the major component in particles in the near future.
The mechanism of mutual conversion between nitrate and other components also need
more detail research together with more comprehensive observations.
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