Effects of Periodic Tidal Elevations on the Air-Sea Momentum and Turbulent Heat Fluxes in the East China Sea
Abstract
:1. Introduction
2. Data and Method
2.1. Description of Platform Observations: Construction and Instruments
2.2. Method of Air-Sea Flux Calculation: Bulk Formulas
3. Observations of Air-Sea Variables and SSE
3.1. Direct Observations of Air-Sea Variables
3.2. Observations of SSE and Harmonic Analysis
3.3. Estimations of Air-Sea Turbulent Heat Fluxes Based on Bulk Formulas
4. Effect of Tidal SSE on the Air-Sea Momentum and Turbulent Heat Fluxes
4.1. Mean Result
4.2. Effect of Tidal SSE under BLS Changes
5. Effect of Tidal SSE on Wind Stress and Turbulent Heat Fluxes under Extreme Weather Conditions
5.1. Effect of Tidal SSE on and during Cold-Air Outbreaks
5.2. Effect of Tidal SSE on and during Tropical Cyclones
6. Wind and Thermal Effects on the Hourly Anomalies of and for Unstable and Stable BL States
7. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekman, V.W. On the influence of the Earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys. 1905, 2, 1–52. [Google Scholar]
- Price, J.F.; Weller, R.A.; Schudlich, R.R. Wind-driven ocean currents and Ekman transport. Science 1987, 238, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987; 710p. [Google Scholar]
- Huang, R.X. Ocean Circulation: Wind-Driven and Thermohaline Processes; Cambridge University Press: Cambridge, UK, 2011; 828p. [Google Scholar]
- Cayan, D.R. Latent and sensible flux over the north oceans: The connection to monthly atmosphere circulation. J. Clim. 1992, 5, 354–369. [Google Scholar] [CrossRef] [Green Version]
- Carton, J.; Zhou, Z. Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res. Space Phys. 1997, 102, 27813–27824. [Google Scholar] [CrossRef]
- Moisan, J.R.; Niiler, P.P. The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr. 1998, 28, 401–421. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Weller, R.A. Role of Net Surface Heat Flux in Seasonal Variations of Sea Surface Temperature in the Tropical Atlantic Ocean. J. Clim. 2006, 19, 6153–6169. [Google Scholar] [CrossRef]
- Weare, B.C. Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus 1989, 41, 357–370. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Weare, B.C. Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Clim. 1997, 10, 2764–2781. [Google Scholar] [CrossRef]
- Grist, J.P.; Josey, S.A. Inverse Analysis Adjustment of the SOC Air-sea Flux Climatology Using Ocean Heat Transport Constraints. J. Clim. 2003, 16, 3274–3295. [Google Scholar] [CrossRef]
- Brunke, M.A.; Wang, Z.; Zeng, X.; Bosilovich, M.G.; Shie, C.-L. An Assessment of the Uncertainties in Ocean Surface Turbulent Fluxes in 11 Reanalysis, Satellite-Derived, and Combined Global Datasets. J. Clim. 2011, 24, 5469–5493. [Google Scholar] [CrossRef]
- Song, X.; Yu, L. How much net surface heat flux should go into the Western Pacific Warm Pool? J. Geophys. Res. Oceans 2013, 118, 3569–3585. [Google Scholar] [CrossRef]
- Weller, R.A.; Farrar, J.; Buckley, J.; Mathew, S.; Venkatesan, R.; Lekha, J.S.; Chaudhuri, D.; Kumar, N.S.; Kuman, B.P. Air-Sea Interaction in the Bay of Bengal. Oceanography 2016, 29, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Yu, L. Global Air-sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Annu. Rev. Mar. Sci. 2019, 11, 227–248. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of the flux measurements for density effects due to heat and water vapor transfer, Quart. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Liebethal, C.; Foken, T. On the Significance of the Webb Correction to Fluxes. Bound. Layer Meteorol. 2003, 109, 99–106. [Google Scholar] [CrossRef]
- Brodeau, L.; Barnier, B.; Gulev, S.K.; Woods, C. Climatologically Significant Effects of Some Approximations in the Bulk Parameterizations of Turbulent Air-sea Fluxes. J. Phys. Oceanogr. 2016, 47, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Brasseur, J.G. Analysis of Monin–Obukhov similarity from large-eddy simulation. J. Fluid Mech. 1997, 345, 251–286. [Google Scholar] [CrossRef]
- Johansson, C.; Smedman, A.; Högström, U.; Brasseur, J.G.; Khanna, S. Critical test of the validity of Monin-Obukhov similarity during convective conditions. J. Atmos. Sci. 2001, 58, 1549–1566. [Google Scholar] [CrossRef]
- Sahlée, E.; Smedman, A.S.; Högström, U. Influence of the boundary layer height on the global air-sea surface fluxes. Clim. Dyn. 2009, 33, 33–44. [Google Scholar] [CrossRef]
- Gryning, S.E.; Batchvarova, E.; Brümmer, B.; Jørgensen, H.E.; Larsen, S.E. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound. Layer Meteorol. 2007, 124, 251–268. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.E.; Hasager, C.B. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor. Appl. Climatol. 2010, 100, 325–335. [Google Scholar] [CrossRef]
- Optis, M.; Monahan, A.; Bosveld, F.C. Moving Beyond Monin–Obukhov Similarity Theory in Modelling Wind-Speed Profiles in the Lower Atmospheric Boundary Layer under Stable Stratification. Bound. Layer Meteorol. 2014, 153, 497–514. [Google Scholar] [CrossRef]
- Song, J.; Fan, W.; Li, S.; Zhou, M. Impact of Surface Waves on the Steady Near-Surface Wind Profiles over the Ocean. Bound. Layer Meteorol. 2015, 155, 111–127. [Google Scholar] [CrossRef]
- Josey, S.A. A Comparison of ECMWF, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic. J. Clim. 2001, 14, 1780–1789. [Google Scholar] [CrossRef]
- Song, X. The Importance of Relative Wind Speed in Estimating Air-sea Turbulent Heat Fluxes in Bulk Formulas: Examples in the Bohai Sea. J. Atmos. Ocean. Technol. 2020, 37, 589–603. [Google Scholar] [CrossRef]
- Song, X.; Yu, L. Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage. J. Geophys. Res. Oceans 2017, 122, 4068–4087. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yanagi, T. Three-dimensional structure of tidal current in the East China Sea and the Yellow Sea. J. Oceanogr. 1998, 54, 651–668. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res. 2004, 109, C4027. [Google Scholar] [CrossRef]
- Song, X.; Wu, D.; Xie, X. Tides and Turbulent Mixing in the North of Taiwan Island. Adv. Atmos. Sci. 2019, 36, 313–325. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. The main features of turbulent mixing in the surface atmospheric layer. Tr. Inst. Geophys. Acad. Sci. USSR 1954, 24, 163–187. [Google Scholar]
- Liu, W.T.; KKatsaros, B.; Businger, J.A. Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 1979, 36, 2052–2062. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Garratt, J.R. Review of Drag Coefficients over Oceans and Continents. Mon. Weather Rev. 1977, 105, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Panofsky, H.A.; Dutton, J.A. Atmospheric Turbulence; Wiley-Interscience: New York, NY, USA, 1984; p. 397. [Google Scholar]
- Smith, S.D. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 1988, 93, 15467–15472. [Google Scholar] [CrossRef]
- Weller, R.A.; Bradley, F.; Lukas, R. The Interface or Air-sea Flux Component of the TOGA Coupled Ocean–Atmosphere Response Experiment and Its Impact on Subsequent Air-sea Interaction Studies. J. Atmos. Ocean. Technol. 2004, 21, 223–257. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed air-sea heat Fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteor. Soc. 2007, 88, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Grossman, R.L.; Betts, A.K. Air-sea Interaction during an Extreme Cold Air Outbreak from the Eastern Coast of the United States. Mon. Weather Rev. 1990, 118, 324–342. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Bane, J.M.; Goodman, L.M. Modification of the Gulf Stream through Strong Air-sea Interactions in Winter: Observations and Numerical Simulations. J. Phys. Oceanogr. 1995, 25, 533–557. [Google Scholar] [CrossRef] [Green Version]
- Renfrew, I.A.; Moore, G.W.K. An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air-sea interaction. Mon. Weather Rev. 1999, 127, 2379–2394. [Google Scholar] [CrossRef] [Green Version]
- Yu, L. Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing Wind Speed. J. Clim. 2007, 20, 5376–5390. [Google Scholar] [CrossRef]
- Song, X.; Yu, L. High-Latitude Contribution to Global Variability of Air-sea Sensible Heat Flux. J. Clim. 2012, 25, 3515–3531. [Google Scholar] [CrossRef] [Green Version]
Variables | Manufacturer | Type | Range | Accuracy & Resolution | Height | |
---|---|---|---|---|---|---|
1 | SST | National Ocean Technology Center (NOTC) | YZY4 T-S Sensor | (−5~+50) °C | 0.05 °C | 0 m |
2 | SSS | NOTC | YZY4 T-S Sensor | 8~36 | 0.1 | 0 m |
3 | SSE | Switzerland DIMETIX and NOTC | DLS-A30 SCA11 | (0~1000) cm | 0.1 cm | 0 m |
4 | Wind Speed | NOTC | XFY3 Wind Sensor | (0~75) m/s | 0.1 m/s | 22 m |
5 | Wind Direction | NOTC | XFY3 Wind Sensor | (0~360)° | 1° | 22 m |
6 | SAT | Finland, VAISALA | HMP45A T-RH Sensor | (−40~+60) °C | 0.1 °C | 17 m |
7 | RH | Finland, VAISALA | HMP45A T-RH Sensor | (0~100)% | 1% | 17 m |
8 | SLP | Setra, USA | 278 Barometric Sensor | (850~1050) hPa | 0.1 hPa | 13 m |
Tide Constituent | Frequency (hour−1) | Amplitude (m) | Amplitude Error (m) | Phase (°) | Phase Error (°) | Signal Noise Ratio |
---|---|---|---|---|---|---|
M2 | 8.1 × 10−2 | 1.9 | 2.0 × 10−2 | 239.0 | 0.5 | 1.5 × 104 |
S2 | 8.3 × 10−2 | 0.8 | 2.0 × 10−2 | 28.9 | 1.2 | 2.8 × 103 |
N2 | 7.9 × 10−2 | 0.3 | 1.6 × 10−2 | 32.9 | 2.8 | 4.6 × 102 |
K1 | 4.2 × 10−2 | 0.2 | 1.0 × 10−2 | 277.0 | 2.6 | 6.4 × 102 |
K2 | 8.4 × 10−2 | 0.2 | 2.0 × 10−2 | 317.1 | 5.2 | 1.4 × 102 |
O1 | 3.9 × 10−2 | 0.1 | 1.0 × 10−2 | 165.6 | 4.7 | 1.9 × 102 |
(Nm−2) | (Wm−2) | (Wm−2) | (ms−1) | (C) | (C) | (m) | ||
---|---|---|---|---|---|---|---|---|
−1.3 × 10−3 | −1 | 4 × 10−2 | −2.5 × 10−3 | 2.6 × 10−4 | 17 | −19 | 35 | |
−8.5 × 10−4 | −1 | −4 × 10−1 | −1.2 × 10−3 | 7.7 × 10−4 | 13 | − | 93 | |
1.4 × 10−3 | 1 | −2 × 10−2 | 2.8 × 10−3 | −2.9 × 10−4 | 19 | 20 | 36 | |
9.1 × 10−4 | 1 | 4 × 10−1 | 1.3 × 10−3 | −8.8 × 10−4 | 15 | − | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Liu, Y.; Jiang, X.; Lin, M.; Li, Y.; Yang, B.; Xu, C.; Yuan, L.; Luo, J.; Liu, K.; et al. Effects of Periodic Tidal Elevations on the Air-Sea Momentum and Turbulent Heat Fluxes in the East China Sea. Atmosphere 2022, 13, 90. https://doi.org/10.3390/atmos13010090
Han Y, Liu Y, Jiang X, Lin M, Li Y, Yang B, Xu C, Yuan L, Luo J, Liu K, et al. Effects of Periodic Tidal Elevations on the Air-Sea Momentum and Turbulent Heat Fluxes in the East China Sea. Atmosphere. 2022; 13(1):90. https://doi.org/10.3390/atmos13010090
Chicago/Turabian StyleHan, Yuting, Yuxin Liu, Xingwei Jiang, Mingsen Lin, Yangang Li, Bo Yang, Changsan Xu, Lingling Yuan, Jingxin Luo, Kexiu Liu, and et al. 2022. "Effects of Periodic Tidal Elevations on the Air-Sea Momentum and Turbulent Heat Fluxes in the East China Sea" Atmosphere 13, no. 1: 90. https://doi.org/10.3390/atmos13010090
APA StyleHan, Y., Liu, Y., Jiang, X., Lin, M., Li, Y., Yang, B., Xu, C., Yuan, L., Luo, J., Liu, K., Chen, X., Yu, F., & Song, X. (2022). Effects of Periodic Tidal Elevations on the Air-Sea Momentum and Turbulent Heat Fluxes in the East China Sea. Atmosphere, 13(1), 90. https://doi.org/10.3390/atmos13010090