On the Results of a Special Experiment on the Registration of Traveling Ionospheric Disturbances by a System of Synchronously Operating Chirp Ionosondes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location (Experiment Geometry) and Method
2.2. Equipment Used
3. Results
3.1. Determination Parameters of TID Movement
3.2. The State of the Daytime Ionosphere on 19 December 2019 (According to the CADI Ionosonde in Vasilsursk)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, J.A.; Mimno, H.R. The Reception of Radio Echoes From Distant Ionospheric Irregularities. Phys. Rev. 1940, 57, 95–105. [Google Scholar] [CrossRef]
- Munro, G.H. Short-Period Changes in the F Region of the Ionosphere. Nature 1948, 162, 886–887. [Google Scholar] [CrossRef]
- Munro, G.H.; Heisler, L.H. Cusp Type Anomalies in Variable Frequency Ionospheric Records. Aust. J. Phys. 1956, 9, 343–358. [Google Scholar] [CrossRef]
- Munro, G.H. Travelling Ionospheric Disturbances in the F-region. Aust. J. Phys. 1958, 11, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Munro, G.H. TID’s in the Ionosphere. Aust. J. Phys. 1962, 15, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Hunsucker, R.D. Radio Techniques for Probing the Terrestrial Ionosphere; Book Series Physics and Chemistry in Space 22 Planetology; Springer: Berlin/Heidelberg, Germany, 1991; pp. 65–93. [Google Scholar]
- Afraimovich, É.L. Interference Methods of the Ionospheric Radio Sounding; Nauka: Moscow, Russia, 1982; pp. 93–180. (In Russian) [Google Scholar]
- Georges, T.M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. Terr. Phys. 1968, 30, 735–746. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Community Coordinated Modeling Center. Available online: https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php (accessed on 10 November 2021).
- Ivanov, V.A.; Kurkin, V.I.; Nosov, V.E.; Uryadov, V.P.; Shumaev, V.V. Chirp ionosonde and its application in the ionospheric research. Radiophys. Quantum Electron. 2003, 46, 821–851. [Google Scholar] [CrossRef]
- Kurkin, V.I.; Laryunin, O.A.; Podlesny, A.V. Studying morphological characteristics of traveling ionospheric disturbances with the use of near-vertical ionospheric sounding data. Atmos. Ocean. Opt. 2014, 27, 303–309. [Google Scholar] [CrossRef]
- Mikhailov, S.Y.; Grozov, V.P.; Chistyakova, L.V. Retrieval of the Ionospheric Disturbance Dynamics Based on Quasi-Vertical and Vertical Ionospheric Sounding. Radiophys. Quantum Electron. 2016, 59, 341–351. [Google Scholar] [CrossRef]
- Harris, T.J.; Cervera, M.A.; Meehan, D.H. SpICE: A program to study small-scale disturbances in the ionosphere. J. Geophys. Res. 2012, 117, A06321. [Google Scholar] [CrossRef] [Green Version]
- Ayliffe, J.K.; Durbridge, L.J.; Frazer, G.J.; Gardiner-Garden, R.S.; Heitmann, A.J.; Praschifka, J. The DSTGroup high-fidelity, multichannel oblique incidence ionosonde. Radio Sci. 2019, 54, 104–114. [Google Scholar] [CrossRef]
- Warning and Mitigation Technologies for Travelling Ionospheric Disturbances Effects-TechTide. Available online: http://www.tech-tide.eu/ (accessed on 10 November 2021).
- Vybornov, F.I.; Mityakova, E.E.; Rakhlin, A.V. Analysis of appearance of moving ionospheric disturbances of the “sickle” type at middle latitudes. Radiophys. Quantum Electron. 1997, 40, 980–986. [Google Scholar] [CrossRef]
- Otsuka, Y.; Suzuki, K.; Nakagawa, S.; Nishioka, M.; Shiokawa, K.; Tsugawa, T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, 31, 163–172. [Google Scholar] [CrossRef]
- Fišer, J.; Chum, J.; Liu, J.Y. Medium-scale traveling ionospheric disturbances over Taiwan observed with HF Doppler sounding. Earth Planets Space 2017, 69, 131. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, A.V.; Ratovsky, K.G.; Tolstikov, M.V.; Alsatkin, S.S.; Scherbakov, A.A. Studying of the spatial-temporal structure of wave-like ionospheric disturbances on the base of Irkutsk incoherent scatter radar and Digisonde data. J. Atmos. Sol. Terr. Phys. 2013, 105–106, 350–357. [Google Scholar] [CrossRef]
- Oinats, A.V.; Kurkin, V.I.; Nishitani, N. Statistical study of medium-scale traveling ionospheric disturbances using Super DARN Hokkaido ground backscatter data for 2011. Earth Planets Space 2015, 67, 22. [Google Scholar] [CrossRef] [Green Version]
- Oinats, A.V.; Nishitani, N.; Ponomarenko, P. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planets Space 2016, 68, 8. [Google Scholar] [CrossRef] [Green Version]
- Defense Science and Technology Group. Scientific Publications. Available online: https://www.dst.defence.gov.au/publications/scientific-publications (accessed on 10 November 2021).
- Cervera, M.A.; Harris, T.J. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves. J. Geophys. Res. Space Phys. 2014, 119, 431–440. [Google Scholar] [CrossRef]
- Frolov, V.L. Spatial structure of plasma density perturbations, induced in the ionosphere modified by powerful HF radio waves: Review of experimental results. Sol.-Terr. Phys. 2015, 1, 22–48. [Google Scholar] [CrossRef] [Green Version]
- Pradipta, R.; Lee, M.C.; Cohen, J.A. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments. Earth Moon Planets 2015, 116, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Gershman, B.N.; Grigor’ev, G.I. Traveling ionospheric disturbances—A review. Radiophys. Quantum Electron. 1968, 11, 1–13. [Google Scholar] [CrossRef]
- Grigor’ev, G.I. Acoustic-gravity waves in the earth’s atmosphere (review). Radiophys. Quantum Electron. 1999, 42, 1–21. [Google Scholar] [CrossRef]
- Grigor’ev, G.I. Traveling ionospheric disturbances arising as a result of powerful transmitter operation. Izv. Vuzov Radiofiz. [Radiophys. Quant. Electr.] 1975, 18, 1801–1805. (In Russian) [Google Scholar]
- Grigor’ev, G.I.; Trakhtengerts, V.Y. Radiation of inner gravity waves by operation of powerful heating facility in a scheme of time modulation of ionospheric currents. Geogmagn. Aeronom. 1999, 39, 90–94. (In Russian) [Google Scholar]
- Scientific Instrumentation Ltd. Available online: https://sil.sk.ca (accessed on 10 November 2021).
- Akchurin, A.D.; Bochkarev, V.V.; Ryabchenko, E.Y.; Sherstyukov, O.N. Improved precision of virtual height measurements with coherent radio pulse sounding based on the maximum likelihood method. Adv. Space Res. 2009, 43, 1595–1602. [Google Scholar] [CrossRef]
- Vertogradov, G.G.; Uryadov, V.P.; Vybornov, F.I.; Pershin, A.V. Modeling of Decameter Radio Wave Propagation Under Conditions of a WaveLike Electron-Density Disturbance. Radiophys. Quantum Electron. 2018, 61, 407–417. [Google Scholar] [CrossRef]
- UAG-93: Ionogram Analysis with the Generalised Program POLAN. By J. E. Titheridge. Available online: https://www.sws.bom.gov.au/IPSHosted/INAG/uag_93/uag_93.html (accessed on 10 November 2021).
- URSI Handbook of Ionogram Interpretation and Reduction, 2nd ed.; World Data Center for A Solar-Terrestrial Physics: Boulder, CO, USA; NOAA: Washington, DC, USA, 1978.
- Solarmonitor.org. Available online: https://www.solarmonitor.org (accessed on 31 December 2021).
- SOHO LASCO CME CATALOG. Available online: https://cdaw.gsfc.nasa.gov/CME_list/ (accessed on 28 December 2021).
- Advanced Composition Explorer (ACE). Available online: http://www.srl.caltech.edu/ACE) (accessed on 28 December 2021).
- World Data Center for Geomagnetism, Kyoto. Available online: http://wdc.kugi.kyoto-u.ac.jp (accessed on 28 December 2021).
- GFZ. Helmholtz-Zentrum Potsdam. Available online: http://www.gfz-potsdam.de/kp_index (accessed on 28 December 2021).
- Afraimovich, E.L.; Perevalova, N.P.; Voyeikov, S.V. Traveling wave packets of total electron content disturbances as deduced from global GPS network data. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1245–1262. [Google Scholar] [CrossRef] [Green Version]
№ | Locations of Chirp Stations | Coordinates |
---|---|---|
1 | Vasilsursk (R, T) | 56.3° N; 46.08° E |
2 | Kazan (R, T) | 55.8° N; 49.12° E |
3 | Yoshkar-Ola (R, T) | 56.62° N; 47.87° E |
4 | Nizhny Novgorod (R) | 56.32° N; 44.02° E |
Track | Initial Azimuth, Grad | Distance, km | Midpoint Coordinates |
---|---|---|---|
Vasilsursk—Yoshkar-Ola | 63 | 123 | 56.4° N; 47.0° E |
Vasilsursk—Kazan | 100 | 193 | 56.0° N; 47.6° E |
Vasilsursk—Nizhny Novgorod | 280 | 130 | 56.2° N; 45.1° E |
Yoshkar-Ola—Kazan | 139 | 120 | 56.2° N; 48.5° E |
Yoshkar-Ola—Nizhny Novgorod | 264 | 240 | 56.5° N; 45.9° E |
Казань—Nizhny Novgorod | 282 | 323 | 56.0° N; 46.6° E |
Track | Initial Azimuth, Grad | Distance, km | Time Delay, min |
---|---|---|---|
Kazan-Yoshkar-Ola and Vasilsursk-Yoshkar-Ola | 283 | 96 | −8 |
Yoshkar-Ola-Kazan and Vasilsursk-Kazan | 245 | 61 | 1 |
Yoshkar-Ola-Vasilsursk and Kazan-Vasilsursk | 138.5 | 59 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vybornov, F.; Sheiner, O.; Kolchev, A.; Zykov, E.; Chernov, A.; Shumaev, V.; Pershin, A. On the Results of a Special Experiment on the Registration of Traveling Ionospheric Disturbances by a System of Synchronously Operating Chirp Ionosondes. Atmosphere 2022, 13, 84. https://doi.org/10.3390/atmos13010084
Vybornov F, Sheiner O, Kolchev A, Zykov E, Chernov A, Shumaev V, Pershin A. On the Results of a Special Experiment on the Registration of Traveling Ionospheric Disturbances by a System of Synchronously Operating Chirp Ionosondes. Atmosphere. 2022; 13(1):84. https://doi.org/10.3390/atmos13010084
Chicago/Turabian StyleVybornov, Fedor, Olga Sheiner, Alexey Kolchev, Evgeniy Zykov, Aleksandr Chernov, Vladimir Shumaev, and Aleksandr Pershin. 2022. "On the Results of a Special Experiment on the Registration of Traveling Ionospheric Disturbances by a System of Synchronously Operating Chirp Ionosondes" Atmosphere 13, no. 1: 84. https://doi.org/10.3390/atmos13010084
APA StyleVybornov, F., Sheiner, O., Kolchev, A., Zykov, E., Chernov, A., Shumaev, V., & Pershin, A. (2022). On the Results of a Special Experiment on the Registration of Traveling Ionospheric Disturbances by a System of Synchronously Operating Chirp Ionosondes. Atmosphere, 13(1), 84. https://doi.org/10.3390/atmos13010084