Wind Shear of Low-Level Jets and Their Influence on Manned and Unmanned Fixed-Wing Aircraft during Landing Approach
Abstract
:1. Introduction
- The maximum wind speed is at least 2 m s and 25% higher than the minimum wind speed at higher altitudes.
- If the difference of the wind speed maximum and the next local wind speed minimum is smaller than 1 m s, the minimum is neglected, and a subsequent minimum above is taken into account.
- If no explicit minimum is found in the wind profile of a certain altitude range, the minimal wind speed within the available altitude range is used as the minimum.
- To ensure temporal continuity, only LLJ events that are persistent for at least three consecutive time steps of 10 min are counted as LLJ.
2. Materials and Methods
2.1. Wind Lidar Data Sets
- Braunschweig Airport (5219.3408 N, 1033.2866 E) from June 2013 to May 2014
- Clausthal-Zellerfeld, Institute of Electrical Power Engineering and Energy Systems, TU Clausthal (5147.9794 N, 1021.1217 E) from November 2014 to October 2015
2.2. Impact of Windshear on Aircraft Motion
2.3. Impact of Unexpected Wind Shear on UAS
- High wind speed can exceed the operational wind speed resulting in unstable or uncontrollable approaches
- High wind shear/gust can exceed the controllability of the fixed wing UAS by reaching or even falling under minimum airspeed or introducing massive oscillations.
- Unexpected wind speed value and direction can result in a higher energy consumption, resulting in low battery and loss of control situations.
- Automatic approach (of commanded UAS autopilot control) is based on a steady airspeed control and a constant sink rate control in the final approach phase. The headwind component of the LLJ event increases or decreases the ground speed. The result is a too long or too short approach, resulting in a missed approach, low battery situations or in worst case in an accident.
2.4. Processing of Experimental Data
3. Results
3.1. Statistics of LLJ Wind Shear
3.1.1. LLJ and Rotation of the Wind Direction
3.1.2. LLJ Wind Shear Gradients
3.1.3. LLJ Maximum Wind Speed Values
4. Discussion
4.1. Hazard Potential for Manned Aircraft
4.2. Hazard Potential for UAS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arkell, R.E. Differentiating between Types of Wind Shear in Aviation Forecasting, National Weather Digest. 2000. Available online: http://nwafiles.nwas.org/digest/papers/2000/Vol24No3/Pg39-Arkell.pdf (accessed on 20 December 2021).
- International Civil Aviation Organization. Manual on Low-Level Wind Shear; Technical Report 9817 AN/449; International Civil Aviation Organization: Montreal, QC, Canada, 2005; Available online: https://skybrary.aero/bookshelf/books/2194.pdf (accessed on 20 December 2021).
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; p. 666. [Google Scholar]
- Ziemann, A.; Galvez Arboleda, A.; Lampert, A. Comparison of wind lidar data and numerical simulations of the low-level jet at a grassland site. Energies 2020, 13, 6264. [Google Scholar] [CrossRef]
- Abdou, K.; Parker, D.J.; Brooks, B.; Kalthoff, N.; Lebel, T. The diurnal cycle of lower boundary-layer wind in the West African monsoon. Q. J. R. Meteorol. Soc. 2010, 136, 66–76. [Google Scholar] [CrossRef]
- Baas, P.; Bosveld, F.C.; Klein Baltink, H.; Holtslag, A.A.M. A Climatology of Nocturnal Low-Level Jets at Cabauw. J. Appl. Meteorol. Climatol. 2009, 48, 1627–1642. [Google Scholar] [CrossRef]
- Banta, R.M.; Newsome, R.K.; Lundquist, J.K.; Pichugina, Y.L.; Coulter, R.L.; Mahrt, L. Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound. Layer Meteorol. 2002, 105, 221–252. [Google Scholar] [CrossRef]
- Kallistratova, M.; Kouznetsov, R.D.; Kuznetsov, D.D.; Kuznetsova, I.N.; Nakhaev, M.; Chirokova, G. Summertime low-level jet characteristics measured by sodars over rural and urban areas. Meteorol. Z. 2009, 3, 289–295. [Google Scholar] [CrossRef]
- Seefeldt, M.W.; Cassano, J.J. An Analysis of Low-Level Jets in the Greater Ross Ice Shelf Region Based on Numerical Simulations. Mon. Weather Rev. 2008, 136, 4188–4205. [Google Scholar] [CrossRef]
- Song, J.; Liao, K.; Coulter, R.L.; Lesht, B.M. Climatology of the low-level jet at the southern Great Plains Atmospheric Boundary Layer Experiment Site. J. Appl. Meteorol. 2005, 44, 1593–1606. [Google Scholar] [CrossRef]
- Tuck, A. Turbulence: Vertical Shear of the Horizontal Wind, Jet Streams, Symmetry Breaking, Scale Invariance and Gibbs Free Energy. Atmosphere 2021, 12, 1414. [Google Scholar] [CrossRef]
- Beyrich, F. Sodar observations of the stable boundary layer height in relation to the nocturnal low-level jet. Meteorol. Z. 1994, 3, 29–34. [Google Scholar] [CrossRef]
- Lampert, A.; Bernalte Jimenez, B.; Wulff, D.; Kenull, T. One-year observations of the wind distribution and low-level jet occurrence at Braunschweig, North German Plain. Wind Energy 2015, 19, 1807–1817. [Google Scholar] [CrossRef]
- Blackadar, A.K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Met. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef] [Green Version]
- Steele, C.J.; Dorling, S.R.; von Glasow, R.; Bacon, J. Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: Implications for offshore wind energy. Q. J. R. Meteorol. Soc. 2015, 141, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Savijärvi, H.; Niemelä, S.; Tisler, P. Coastal winds and low-level jets: Simulations for sea gulfs. Q. J. R. Meteorol. Soc. 2005, 131, 625–637. [Google Scholar] [CrossRef]
- Doyle, J.D.; Warner, T.T. A Three-Dimensional Numerical Investigation of a Carolina Coastal Low-Level Jet during GALE IOP 2. Mon. Weather Rev. 1993, 121, 1030–1047. [Google Scholar] [CrossRef]
- Stensrud, D.J. Importance of Low-Level Jets to Climate: A Review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Gutierrez, W.; Araya, G.; Kiliyanpilakkil, P.; Ruiz-Columbie, A.; Tutkun, M.; Castillo, L. Structural impact assessment of low level jets over wind turbines. J. Renew. Energy 2016, 8, 023308. [Google Scholar] [CrossRef]
- Storm, B.; Dudhia, J.; Basu, S.; Swift, A.; Giammanco, I. Evaluation of the Weather Research and Forecasting model on Forecasting Low-Level Jets: Implications for Wind Energy. Wind Energy 2009, 12, 81–90. [Google Scholar] [CrossRef]
- Beare, R.J.; Edwards, J.M.; Lapworth, A.J. Simulation of the observed evening transition and nocturnal boundary layers: Large-eddy simulation. Q. J. R. Meteorol. Soc. 2006, 132, 81–99. [Google Scholar] [CrossRef]
- Sandu, I.; Beljaars, A.; Bechtold, P.; Mauritsen, T.; Balsamo, G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 2013, 5, 117–133. [Google Scholar] [CrossRef]
- Baas, P.; van de Wiel, B.J.H.; van der Linden, S.J.A.; Bosveld, F.C. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw. Bound. Layer Meteorol. 2018, 166, 217–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, G. Numerical simulation of future low-level jet characteristics. Meteorol. Z. 2012, 21, 305–311. [Google Scholar] [CrossRef]
- Cermak, J.; Eastman, R.M.; Bendix, J.; Warren, S.G. European climatology of fog and low stratus based on geostationary satellite observations. Q. J. R. Meteorol. Soc. 2009, 135, 2125–2130. [Google Scholar] [CrossRef]
- Anderson, J.D. Fundamentals of Aerodynamics; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Brockhaus, R.; Alles, W.; Luckner, R. Flugregelung. 2011. Available online: https://www.springer.com/de/book/9783642014420 (accessed on 20 December 2021).
- Shearman, W.L. A Theoretical Analysis of Airplane Longitudinal Stability and Control as Affected by Wind Shear; NASA: Washington, DC, USA, 1977. [Google Scholar]
- Krauspe, P. Beiträge zur Längsbewegung von Flugzeugen in Windscherungen. Ph.D. Thesis, TU Braunschweig, Braunschweig, Germany, 1983. Available online: http://www.digibib.tu-bs.de/?docid=00024338 (accessed on 20 December 2021).
- Military Specifications: Flying Qualities of Piloted Airplanes, MIL-F-8785 B (ASG). 1969. Available online: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-F/MIL-F-8785C_5295/ (accessed on 20 December 2021).
- Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A. ALADINA—An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmos. Meas. Tech. 2015, 8, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- Altstädter, B.; Platis, A.; Jähn, M.; Baars, H.; Lückerath, J.; Held, A.; Lampert, A.; Bange, J.; Hermann, M.; Wehner, B. Airborne observations of newly formed boundary layer aerosol particles under cloudy conditions. Atmos. Chem. Phys. 2018, 18, 8249–8264. [Google Scholar] [CrossRef] [Green Version]
- Platis, A.; Altstädter, B.; Wehner, B.; Wildmann, N.; Lampert, A.; Hermann, M.; Birmilli, W.; Bange, J. An observational Case Study of the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation. Bound. Layer Meteorol. 2015, 158, 67–92. [Google Scholar] [CrossRef]
- Altstädter, B.; Deetz, K.; Vogel, B.; Babic, K.; Dione, C.; Pacifico, F.; Jambert, C.; Ebus, F.; Bärfuss, K.; Pätzold, F.; et al. The Vertical Variability of Black Carbon Observed in the Atmospheric Boundary Layer during DACCIWA. Atmos. Chem. Phys. 2020, 20, 7911–7928. [Google Scholar] [CrossRef]
- Bärfuss, K.; Pätzold, F.; Altstädter, B.; Kathe, E.; Nowak, S.; Bretschneider, L.; Bestmann, U.; Lampert, A. New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation. Atmosphere 2018, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lampert, A.; Altstädter, B.; Bärfuss, K.; Bretschneider, L.; Sandgaard, J.; Lobitz, L.; Asmussen, M.; Damm, E.; Käthner, R.; Krüger, T.; et al. Unmanned Aerial Systems for Investigating the Polar Atmospheric Boundary Layer–Technical Challenges and Examples of Applications. Atmosphere 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S. Wind speed and shear associated with low-level jets over Northern Germany. Meterol. Z. 2014, 3, 295–304. [Google Scholar] [CrossRef]
- Proctor, F.H.; Hinton, D.A.; Bowles, R.L. A windshear hazard index. In Proceedings of the 9th Conference on Aviation, Range and Aerospace Meteorology od the American Meteorology Society, Orlando, FL, USA, 11–15 September 2000; pp. 482–487. [Google Scholar]
- Rausch, T.; Schuchard, M.; Cañadillas, B.; Lampert, A. One Year Measurements of Vertical Profiles of Wind Speed and Wind Direction from 40 to 500 m at Braunschweig, North German Plain, Lower Saxony, Germany. PANGAEA. 2021. Available online: https://doi.pangaea.de/10.1594/PANGAEA.927744 (accessed on 20 December 2021).
Limits | Occurrence Frequency Braunschweig | Clausthal | |
---|---|---|---|
Positive wind shear | |||
Level 1 | 0.149 s | 0.31% | 0.84% |
Level 2 | 0.163 s | 0.11% | 0% |
Level 3 | 0.303 s | 0% | 0% |
Negative wind shear | |||
Level 1 | −0.1 s | 3.17% | 5.5% |
Level 2 | −0.45 s | 0% | 0% |
Level 3 | −1.2 s | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bretschneider, L.; Hankers, R.; Schönhals, S.; Heimann, J.-M.; Lampert, A. Wind Shear of Low-Level Jets and Their Influence on Manned and Unmanned Fixed-Wing Aircraft during Landing Approach. Atmosphere 2022, 13, 35. https://doi.org/10.3390/atmos13010035
Bretschneider L, Hankers R, Schönhals S, Heimann J-M, Lampert A. Wind Shear of Low-Level Jets and Their Influence on Manned and Unmanned Fixed-Wing Aircraft during Landing Approach. Atmosphere. 2022; 13(1):35. https://doi.org/10.3390/atmos13010035
Chicago/Turabian StyleBretschneider, Lutz, Rudolf Hankers, Shanna Schönhals, Jens-Michael Heimann, and Astrid Lampert. 2022. "Wind Shear of Low-Level Jets and Their Influence on Manned and Unmanned Fixed-Wing Aircraft during Landing Approach" Atmosphere 13, no. 1: 35. https://doi.org/10.3390/atmos13010035
APA StyleBretschneider, L., Hankers, R., Schönhals, S., Heimann, J. -M., & Lampert, A. (2022). Wind Shear of Low-Level Jets and Their Influence on Manned and Unmanned Fixed-Wing Aircraft during Landing Approach. Atmosphere, 13(1), 35. https://doi.org/10.3390/atmos13010035