Situation of Urban Mobility in Pakistan: Before, during, and after the COVID-19 Lockdown with Climatic Risk Perceptions
Abstract
:1. Introduction
2. Data Collection and Methods
2.1. Study Area
2.2. Datasets Used in the Study
2.3. Data Analysis
2.3.1. Anomaly Changes
2.3.2. Pearson Correlation
2.3.3. Kruskal–Wallis H Test (KWt) and Wilcoxon Signed Rank Sum Test (WRST)
2.3.4. Percentage Reduction
2.3.5. Generalized Linear Models (GLM)
3. Results and Discussion
3.1. COVID-19 and Lockdown Setups in Pakistan
3.2. COVID-19 and Urban Mobility
3.3. COVID-19 Lockdown Impacts on the Eco-Environment
3.3.1. COVID-19 Lockdown Impact on Atmospheric Pollution
- (a)
- NO2
- (b)
- Ozone
- (c)
- PM2.5
- (d)
- City Level Analysis
3.3.2. COVID-19 Lockdown and Climatic Parameters
4. Conclusions
- ○
- The government of Pakistan should impose such stringent restrictions on the use of fossil fuels. Similar to China, they should promote short individual trips on foot or by switching vehicles (e.g., motorbikes and Qingqi) to bicycles and scooters.
- ○
- Catalytic converters are required in all large vehicles.
- ○
- The personal mode of transportation must be replaced by group travel or local buses.
- ○
- Controlling the emissions from large point sources.
- ○
- The conversion of diesel-fueled buses and vans to CNG and the installation of diesel oxidation catalysts in metro and other big city buses.
- ○
- The local government should impose some brief lockdowns (1–2 days) once a month on fossil fuel consumption and human transportation, particularly in Lahore, which has experienced the deadliest smog in the last five years.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents 2020, 55, 105948. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Nakamura, S.; Hayashi, Y. Changes of urban activities and behaviors due to COVID-19 in Japan; SSRN: Rochester, NY, USA. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3594054 (accessed on 15 February 2020).
- Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented temporary reduction in global air pollution associated with COVID-19 forced confinement: A continental and city scale analysis. Remote Sens. 2020, 12, 2420. [Google Scholar] [CrossRef]
- Dhar, S.; Shukla, P.R. Low carbon scenarios for transport in India: Co-benefits analysis. Energy Policy 2015, 81, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowski, M.; Kuna-Dibbert, B.; Schneider, J. Health Effects of Transport-Related Air Pollution; WHO Regional Office Europe: Geneva, Switzerland, 2005. [Google Scholar]
- Fullerton, D.G.; Bruce, N.; Gordon, S.B. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.B.; Bruce, N.G.; Grigg, J.; Hibberd, P.L.; Kurmi, O.P.; Lam, K.-B.H.; Mortimer, K.; Asante, K.P.; Balakrishnan, K.; Balmes, J. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2014, 2, 823–860. [Google Scholar] [CrossRef] [Green Version]
- Beig, G.; Sahu, S.K.; Singh, V.; Tikle, S.; Sobhana, S.B.; Gargeva, P.; Ramakrishna, K.; Rathod, A.; Murthy, B. Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi. Sci. Total Environ. 2020, 709, 136126. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Maji, K.J. Substantial changes in PM2. 5 pollution and corresponding premature deaths across China during 2015–2019: A model prospective. Sci. Total Environ. 2020, 729, 138838. [Google Scholar] [CrossRef]
- Rahman, M.; Rana, R.; Khanam, R. Determinants of Life Expectancy in Most Polluted Countries: Exploring the Effect of Environmental Degradation. Res. Sq. 2020, 1–27. Available online: https://assets.researchsquare.com/files/rs-77014/v1_stamped.pdf?c=1600797547 (accessed on 15 February 2020).
- AirVisual, I.J.I.A. World Air Quality Report, Staad, Switzerland. 2018. Available online: https://www.airvisual.com/world-most-polluted-citie (accessed on 15 February 2020).
- Ali, S.M.; Malik, F.; Anjum, M.S.; Siddiqui, G.F.; Anwar, M.N.; Lam, S.S.; Nizami, A.-S.; Khokhar, M.F. Exploring the linkage between PM2. 5 levels and COVID-19 spread and its implications for socio-economic circles. Environ. Res. 2021, 193, 110421. [Google Scholar] [CrossRef]
- Raunak, R.; Sawant, N.; Sinha, S. Impact of Covid-19 on Urban Mobility in Indian Cities. Transp. Commun. Bull. Asia Pac. 2020, 90, 71–85. [Google Scholar]
- Mehmood, K.; Saifullah, M.I.; Abrar, M.M. Can exposure to PM2. 5 particles increase the incidence of coronavirus disease 2019 (COVID-19)? Sci. Total Environ. 2020, 741, 140441. [Google Scholar] [CrossRef]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. 2020, 728, 138890. [Google Scholar] [CrossRef]
- Hitchcock, G.; Conlan, B.; Kay, D.; Brannigan, C.; Newman, D. Air Quality and Road Transport. In Impacts Solutions; RAC Foundation: London, UK, 2014. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- WHO. Available online: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf (accessed on 18 June 2020).
- Latha, R.; Murthy, B.; Sandeepan, B.; Bhanage, V.; Rathod, A.; Tiwari, A.; Beig, G.; Singh, S. Propagation of cloud base to higher levels during Covid-19-Lockdown. Sci. Total Environ. 2021, 759, 144299. [Google Scholar]
- Kanga, S.; Meraj, G.; Farooq, M.; Nathawat, M.; Singh, S.K. Risk assessment to curb COVID-19 contagion: A preliminary study using remote sensing and GIS. Res. Square 2020, 1–19. [Google Scholar] [CrossRef]
- Nakajima, K.; Takane, Y.; Kikegawa, Y.; Furuta, Y.; Takamatsu, H. Human behaviour change and its impact on urban climate: Restrictions with the G20 Osaka Summit and COVID-19 outbreak. Urban Clim. 2021, 35, 100728. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, K.; Bao, Y.; Abrar, M.M.; Petropoulos, G.P.; Soban, A.; Saud, S.; Khan, Z.A.; Khan, S.M.; Fahad, S. Spatiotemporal variability of COVID-19 Pandemic in relation to Air pollution, Climate and Socioeconomic Factors in Pakistan. Chemosphere 2021, 271, 129584. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental Impacts of Shifts in Energy, Emissions, and Urban Heat Island during the COVID-19 Lockdown Across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef]
- Arshad, A.; Hussain, S.; Saleem, F.; Shafeeque, M.; Khan, S.N.; Waqas, M.S. Unprecedented reduction in airborne aerosol particles and nitrogen dioxide level in response to COVID-19 pandemic lockdown over the Indo-Pak region. Earth Space Sci. Open Arch. 2020. [Google Scholar] [CrossRef]
- Fowler, H.; Archer, D. Conflicting signals of climatic change in the Upper Indus Basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Khan, M.T.I.; Ali, Q.; Hussain, T.; Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 2020, 28, 40378–40393. [Google Scholar] [CrossRef] [PubMed]
- Ali, G. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach. Sci. Total Environ. 2018, 634, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A. Climate change risk and reduction approaches in Pakistan. In Disaster Risk Reduction Approaches in Pakistan; Springer: Berlin/Heidelberg, Germany, 2015; pp. 195–216. [Google Scholar]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Bank, W. World Development Report 2012: Gender Equality and Development; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Kreft, S.; Eckstein, D.; Melchior, I. Who suffers most from extreme weather events? Global Clim. Risk Index 2017, 10, 1998–2017. [Google Scholar]
- Economic Survey of Pakistan, Economic Advisor’s Wing; Ministry of Finance: Islamabad, Pakistan, 2018.
- McKight, P.E.; Najab, J. Kruskal-wallis test. Corsini Encycl. Psychol. 2010, 1. [Google Scholar] [CrossRef]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and application of the Kruskal-Wallis test. Proc. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Feir-Walsh, B.J.; Toothaker, L.E. An empirical comparison of the ANOVA F-test, normal scores test and Kruskal-Wallis test under violation of assumptions. Educ. Psychol. Meas. 1974, 34, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Caraka, R.E.; Yusra, Y.; Toharudin, T.; Chen, R.-C.; Basyuni, M.; Juned, V.; Gio, P.U.; Pardamean, B. Did Noise Pollution Really Improve during COVID-19? Evidence from Taiwan. Sustainability 2021, 13, 5946. [Google Scholar] [CrossRef]
- Caraka, R.; Lee, Y.; Kurniawan, R.; Herliansyah, R.; Kaban, P.; Nasution, B.; Gio, P.; Chen, R.; Toharudin, T.; Pardamean, B. Impact of COVID-19 large scale restriction on environment and economy in Indonesia. Glob. J. Environ. Sci. Manag. 2020, 6, 65–84. [Google Scholar]
- Roberts–Semple, D.; Song, F.; Gao, Y. Seasonal characteristics of ambient nitrogen oxides and ground–level ozone in metropolitan northeastern New Jersey. Atmos. Pollut. Res. 2012, 3, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Noble, C.A.; Mukerjee, S.; Gonzales, M.; Rodes, C.E.; Lawless, P.A.; Natarajan, S.; Myers, E.A.; Norris, G.A.; Smith, L.; Özkaynak, H. Continuous measurement of fine and ultrafine particulate matter, criteria pollutants and meteorological conditions in urban El Paso, Texas. Atmos. Environ. 2003, 37, 827–840. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Biiker, P.; Emberson, L.; Shabbir, R. Monitoring nitrogen dioxide levels in urban areas in Rawalpindi, Pakistan. Water Air Soil Pollut. 2011, 220, 141–150. [Google Scholar] [CrossRef]
- Wei, P.; Ren, Z.; Su, F.; Cheng, S.; Zhang, P.; Gao, Q. Environmental process and convergence belt of atmospheric NO2 pollution in North China. Acta Meteorol. Sin. 2011, 25, 797–811. [Google Scholar] [CrossRef]
- Harkey, M.; Holloway, T.; Oberman, J.; Scotty, E. An evaluation of CMAQ NO2 using observed chemistry-meteorology correlations. J. Geophys. Res. Atmos. 2015, 120, 11775–711797. [Google Scholar] [CrossRef]
- Piccoli, A.; Agresti, V.; Balzarini, A.; Bedogni, M.; Bonanno, R.; Collino, E.; Colzi, F.; Lacavalla, M.; Lanzani, G.; Pirovano, G. Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region. Atmosphere 2020, 11, 1319. [Google Scholar] [CrossRef]
- Our World in Data. Available online: https://github.com/owid/covid-19-data/tree/master/public/data (accessed on 10 March 2020).
- Shafi, M.; Liu, J.; Ren, W. Impact of COVID-19 pandemic on micro, small, and medium-sized Enterprises operating in Pakistan. Res. Glob. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Government of Pakistan (GOP). Available online: http://covid.gov.pk/stats/pakistan (accessed on 18 October 2020).
- Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Darzi, A.; Kabiri, A.; Zhao, G.; Luo, W.; Xiong, C.; Zhang, L. Quantifying human mobility behaviour changes during the COVID-19 outbreak in the United States. Sci. Rep. 2020, 10, 20742. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Guy, C.; Héroux, M.; Lichtfouse, E.; An, C. The impact of successive COVID-19 lockdowns on people mobility, lockdown efficiency, and municipal solid waste. Environ. Chem. Lett. 2021, 2021, 355. [Google Scholar]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.-L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Kaltenbrunner, A.; Meza, R.; Grivolla, J.; Codina, J.; Banchs, R. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive Mob. Comput. 2010, 6, 455–466. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzei, V. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Shafeeque, M.; Arshad, A.; Elbeltagi, A.; Sarwar, A.; Pham, Q.B.; Khan, S.N.; Dilawar, A.; Al-Ansari, N. Understanding temporary reduction in atmospheric pollution and its impacts on coastal aquatic system during COVID-19 lockdown: A case study of South Asia. Geomat. Nat. Hazards Risk 2021, 12, 560–580. [Google Scholar] [CrossRef]
- WHO. Available online: https://covid19.who.int/ (accessed on 29 May 2020).
- Kraemer, M.U.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Nie, D.; Shen, F.; Wang, J.; Ma, X.; Li, Z.; Ge, P.; Ou, Y.; Jiang, Y.; Chen, M.; Chen, M. Changes of air quality and its associated health and economic burden in 31 provincial capital cities in China during COVID-19 pandemic. Atmos. Res. 2021, 249, 105328. [Google Scholar] [CrossRef]
- Su, Z.; Duan, Z.; Deng, B.; Liu, Y.; Chen, X. Impact of the COVID-19 Lockdown on Air Quality Trends in Guiyang, Southwestern China. Atmosphere 2021, 12, 422. [Google Scholar] [CrossRef]
- Shi, C.; Yuan, R.; Wu, B.; Meng, Y.; Zhang, H.; Zhang, H.; Gong, Z. Meteorological conditions conducive to PM2. 5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China. Sci. Total Environ. 2018, 642, 1221–1232. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, K.; Bao, Y.; Petropoulos, G.P.; Abbas, R.; Abrar, M.M.; Mustafa, A.; Soban, A.; Saud, S.; Ahmad, M.; Hussain, I. Investigating connections between COVID-19 pandemic, air pollution and community interventions for Pakistan employing geoinformation technologies. Chemosphere 2021, 272, 129809. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Yin, J. Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York. Atmosphere 2021, 12, 357. [Google Scholar] [CrossRef]
- ESA. European Space Agency. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P (accessed on 4 June 2020).
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef] [PubMed]
- NASA. National Aeronautics and Space Administration. 2020. Available online: https://earthobservatory.nasa.gov/images (accessed on 30 May 2020).
- Monks, P.S.; Archibald, A.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Moniruzzaman, M.; Hande, A.; Rousta, I.; Olafsson, H.; Mondal, K.K. Estimation of particulate matter (PM 2.5, PM 10) concentration and its variation over urban sites in Bangladesh. SN Appl. Sci. 2020, 2, 1993. [Google Scholar] [CrossRef]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.; Bonnaire, N. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Favez, O.; Petit, J.-E.; Canonaco, F.; Truong, F.; Bonnaire, N.; Crenn, V.; Amodeo, T.; Prévôt, A.S.; Sciare, J. Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmos. Chem. Phys. 2019, 19, 14755–14776. [Google Scholar] [CrossRef] [Green Version]
- Viatte, C.; Petit, J.-E.; Yamanouchi, S.; Van Damme, M.; Doucerain, C.; Germain-Piaulenne, E.; Gros, V.; Favez, O.; Clarisse, L.; Coheur, P.-F. Ammonia and PM2. 5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere 2021, 12, 160. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- Srivastava, A. COVID-19 and air pollution and meteorology-an intricate relationship: A review. Chemosphere 2020, 263, 128297. [Google Scholar] [CrossRef]
- Solberg, S.; Walker, S.-E.; Schneider, P.; Guerreiro, C. Quantifying the Impact of the Covid-19 Lockdown Measures on Nitrogen Dioxide Levels throughout Europe. Atmosphere 2021, 12, 131. [Google Scholar] [CrossRef]
- Gottlicher, S.; Gager, M.; Mandl, N.; Mareckova, K. European Union Emission Inventory Report 1990–2008 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); Technical Report No. 9292131028; European Environment Agency: Copenhagen, Denmark, 2010.
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R.P. Decline in PM2. 5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- Šerbula, S.M.; Ţivković, D.T.; Radojević, A.A.; Kalinović, T.S.; Kalinović, J.V. Emission of SO2 and SO42-from copper smelter and its influence on the level of totals in soil and moss in Bor and the surroundings. Hem. Ind. 2015, 69, 51–58. [Google Scholar] [CrossRef]
- Tiwari, S.; Tiwari, S.; Singh, A. A study of outdoor and indoor exposure to particulate matters on students of Banaras Hindu University and city side over Varanasi, India. Earth Sci. India 2015, 9, 79–99. [Google Scholar] [CrossRef]
- Gopal, K.R.; Reddy, K.R.O.; Balakrishnaiah, G.; Arafath, S.M.; Reddy, N.S.K.; Rao, T.C.; Reddy, T.L.; Reddy, R.R. Regional trends of aerosol optical depth and their impact on cloud properties over Southern India using MODIS data. J. Atmos. Sol. Terr. Phys. 2016, 146, 38–48. [Google Scholar] [CrossRef]
- Samani, P.; García-Velásquez, C.; Fleury, P.; van der Meer, Y. The impact of the COVID-19 outbreak on climate change and air quality: Four country case studies. Glob. Sustain. 2021, 4, e9. [Google Scholar] [CrossRef]
- Rosenbloom, D.; Markard, J. A COVID-19 Recovery for Climate. Am. Assoc. Adv. Sci. 2020, 368, 447. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.; Liu, X.; Moniruzzaman, M.; Rousta, I.; Syed, W.; Zhang, J.; Olafsson, H. Assessment of Climate Variability among Seasonal Trends Using in situ Measurements: A Case Study of Punjab, Pakistan. Atmosphere 2021, 12, 939. [Google Scholar] [CrossRef]
Research | Timescale | Datasets | Study Area | Method | Findings |
---|---|---|---|---|---|
Latha et al. [22] | 25 March 2020–15 April 2020 | Clouds, trace gases | Delhi | Simulation models | NO2/NH3 is inversely correlated with cloud base height, which causes the upward shift. |
Kanga et al. [23] | Not mentioned | Gauge | Jaipur | COVID-19 risk assessment and mapping (CRAM) model | The northeastern and southeastern zone has the highest risk for COVID-19. |
Nakajima et al. [24] | 21–29 June 2019 | Mobile Spatial Statistics data | Osaka | Advanced Research WRF (ARW), WRF-CM-BEM models | Temperature has reduced by 0.13 °C in the urban locality because of the Pandemic. |
Liu et al. [25] | 20 January 2020–2 March 2020 | Gauge | 30 Cities in China | Generalized linear models | If we control population movement, then meteorological factors play an independent role in transmitting the virus. |
Zhang et al. [4] | ---------- | Ambient air pollutants | Ten countries | Geospatial correlation | Air pollutants rapidly dropped in 2020 due to lockdown. |
Mehmood et al. [26] | 1 June–31 July 2020 | Gauge | Pakistan | GLM model, Correlation | COVID-19 cases, PM2.5, and climatic factors are significantly correlated, except for Lahore. |
Ali et al. [27] | January–May 2020 | Satellite observational data | Pakistan | Non-parametric Wilcoxon Test | A remarkable reduction has been observed in energy in the lockdown period of Pakistan |
Arshad et al. [28] | 2015–2019, March–May 2020 | Spatial Observation data | Indo-Pakistan | The major metropolitan areas showed a remarkable decrease in NO2 emissions. |
Level of Study | Datasets | Spatial Resolution | Temporal Resolution | Acquisition Date | Sensor/Provider | Data Sources |
---|---|---|---|---|---|---|
Country Level | Tropospheric NO2 | 0.25° | Daily | 2020–2021 (January–February) | Ozone monitoring instrument (OMI) | https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 30 May 2020) |
Dust Column Mass Density PM2.5 | 0.5 × 0.625° | Hourly | 2020–2021 (January–February) | MERRA-2 Model | https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 30 May 2020) | |
Total Column O3 | 1° | Daily | 2020–2021 (January–February) | Ozone monitoring instrument (OMI) | https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 30 May 2020) | |
Urban mobility value | Average over country | Daily | 2020–2021 (February–February) | Our world in data (Google reports) | https://ourworldindata.org/ (assessed on 10 March 2020) | |
COVID-19 data | Average over country | Daily | 2020–2021 (February–February) | Our world in data (Google reports) | https://ourworldindata.org/ (assessed on 10 March 2020) | |
Climate data | Average over country | Daily | 2020–2021 (February–February) | NASA Prediction of Worldwide Energy Resources (POWER) | https://power.larc.nasa.gov/data-access-viewer/ (assessed on 15 April 2020) | |
City Level | NO2 | 0.1° | Monthly | 2016–2020 (January–December) | Ozone monitoring instrument (OMI) | https://mynasadata.larc.nasa.gov/ (assessed on 20 December 2020) |
Ozone | 0.25° | Monthly | 2016–2020 (January–December) | Ozone monitoring instrument (OMI) | https://mynasadata.larc.nasa.gov/ (assessed on 20 December 2020) | |
SO2 | 0.1° | Monthly | 2016–2020 (January–December) | Ozone monitoring instrument (OMI) | https://mynasadata.larc.nasa.gov/ (assessed on 20 December 2020) | |
Aerosol Optical Depth (AOD) | 0.5° | Monthly | 2016–2020 (January–August) | Visible Infrared Imaging Radiometer Suite (VIIRS) | https://mynasadata.larc.nasa.gov/ (assessed on 20 December 2020) |
Parameters | R&R | G&P | Parks | TS | Workplaces | Residential | NO2 | SO2 | O3 |
---|---|---|---|---|---|---|---|---|---|
R&R | 1.000 * | ||||||||
G&P | 0.954 * | 1.000 * | |||||||
Parks | 0.978 * | 0.931 * | 1.000 * | ||||||
TS | 0.982 * | 0.985 * | 0.951 * | 1.000 * | |||||
Workplaces | 0.972 * | 0.907 * | 0.916 * | 0.951 * | 1.000 * | ||||
Residential | −0.981 * | −0.899 * | −0.958 * | −0.937 * | −0.970 * | 1.000 * | |||
NO2 | −0.438 | −0.467 | −0.313 | −0.502 | 0.130 | 0.181 | 1.000 * | ||
SO2 | 0.225 | 0.486 | 0.347 | 0.482 | 0.366 | −0.223 | −0.205 | 1.000 * | |
O3 | −0.491 | −0.636 * | −0.576 * | −0.538 | −0.374 | 0.417 | −0.229 | −0.383 | 1.000 * |
Parameters | NO2 | SO2 | O3 | AOD | Tmax | Tmean | Tmin | Precipitation | Wind Speed |
---|---|---|---|---|---|---|---|---|---|
NO2 | 1.000 * | ||||||||
SO2 | −0.205 | 1.000 * | |||||||
O3 | −0.229 | −0.383 | 1.000 * | ||||||
AOD | 0.698 | 0.582 | −0.889 * | 1.000 * | |||||
Tmax | 0.899 * | −0.445 | −0.218 | 0.579 * | 1.000 * | ||||
Tmean | 0.900 * | −0.462 | −0.103 | 0.691 * | 0.985 * | 1.000 * | |||
Tmin | 0.879 * | −0.465 | −0.001 | 0.771 * | 0.949 * | 0.989 * | 1.000 * | ||
Precipitation | 0.005 | −0.394 | 0.588 * | 0.375 | 0.03 | 0.123 | 0.199 | 1.000 * | |
Wind Speed | −0.301 | 0.524 | −0.048 | −0.498 | −0.412 | −0.477 | −0.521 | −0.216 | 1.000 * |
Parameter | BL | SL | LL | Kruskal Wallis Test | p-Value |
---|---|---|---|---|---|
Mean Rank | Mean Rank | Mean Rank | |||
R&R | 247.49 a | 76.01 b | 208.32 c | 127.299 | 0.001 * |
G&P | 167.27 a | 61.52 b | 229.66 c | 171.087 | 0.001 * |
Parks | 174.39 a | 58.30 b | 229.97 c | 177.974 | 0.001 * |
TS | 190.32 a | 67.52 b | 223.06 c | 146.550 | 0.001 * |
Workplaces | 268.77 a | 87.51 b | 199.43 c | 112.922 | 0.001 * |
Residential | 107.93 a | 259.97 b | 160.78 c | 83.370 | 0.001 * |
City | Month | NO2 | O3 | AOD | Status |
---|---|---|---|---|---|
% | % | % | |||
Lahore | January–March | 12.09 | 6.57 | −9.11 | BL |
April–June | −0.14 | 0.23 | −14.46 | SL | |
July–December | 11.55 | −0.38 | −7.96 | LL | |
Islamabad | January–March | −4.39 | 6.16 | 20.44 | BL |
April–June | −11.21 | 0.55 | −22.65 | SL | |
July–December | 16.14 | −0.55 | −14.98 | LL | |
Karachi | January–March | −14.06 | 6.31 | −7.66 | BL |
April–June | −27.87 | 0.67 | −13.70 | SL | |
July–December | 0.02 | 0.53 | −20.88 | LL |
Parameter | B | Std. Error | 95% Wald Confidence Interval | Df | p-Value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
(Intercept) | 0 | |||||
Tmax | 1706.874 | 449.482 | 717.571 | 2696.176 | 1.000 | 0.004 * |
Tmean | 2297.072 | 647.926 | 870.996 | 3723.149 | 1.000 | 0.005 * |
Tmin | 3078.853 | 1024.806 | 823.271 | 5334.435 | 1.000 | 0.013 * |
Precipitation | 174.018 | 99.014 | −43.911 | 391.947 | 1.000 | 0.109 |
Wind Speed | 14,676.698 | 3816.019 | 6277.697 | 23,075.698 | 1.000 | 0.003 * |
NO2 | 54,285.023 | 12,092.254 | 27,670.152 | 80,899.894 | 1.000 | 0.001 * |
SO2 | 424,675.359 | 149,860.398 | 94,834.848 | 754,515.871 | 1.000 | 0.018 * |
O3 | 128.670 | 35.046 | 51.534 | 205.806 | 1.000 | 0.004 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.; Zhang, J.; Moniruzzaman, M.; Rousta, I.; Omer, T.; Ying, G.; Olafsson, H. Situation of Urban Mobility in Pakistan: Before, during, and after the COVID-19 Lockdown with Climatic Risk Perceptions. Atmosphere 2021, 12, 1190. https://doi.org/10.3390/atmos12091190
Syed A, Zhang J, Moniruzzaman M, Rousta I, Omer T, Ying G, Olafsson H. Situation of Urban Mobility in Pakistan: Before, during, and after the COVID-19 Lockdown with Climatic Risk Perceptions. Atmosphere. 2021; 12(9):1190. https://doi.org/10.3390/atmos12091190
Chicago/Turabian StyleSyed, Alishbah, Jiquan Zhang, Md Moniruzzaman, Iman Rousta, Talha Omer, Guo Ying, and Haraldur Olafsson. 2021. "Situation of Urban Mobility in Pakistan: Before, during, and after the COVID-19 Lockdown with Climatic Risk Perceptions" Atmosphere 12, no. 9: 1190. https://doi.org/10.3390/atmos12091190
APA StyleSyed, A., Zhang, J., Moniruzzaman, M., Rousta, I., Omer, T., Ying, G., & Olafsson, H. (2021). Situation of Urban Mobility in Pakistan: Before, during, and after the COVID-19 Lockdown with Climatic Risk Perceptions. Atmosphere, 12(9), 1190. https://doi.org/10.3390/atmos12091190