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Abstract: The coronavirus pandemic (COVID-19) has impacted the usual global movement patterns,
atmospheric pollutants, and climatic parameters. The current study sought to assess the impact of
the COVID-19 lockdown on urban mobility, atmospheric pollutants, and Pakistan’s climate. For the
air pollution assessment, total column ozone (O3), sulphur dioxide (SO2), and tropospheric column
nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI), aerosol optical depth
(AOD) data from the Multi-angle Imaging Spectroradiometer (MISR), and dust column mass density
(PM2.5) data from the MERRA-2 satellite were used. Furthermore, these datasets are linked to climatic
parameters (temperature, precipitation, wind speed). The Kruskal–Wallis H test (KWt) is used to
compare medians among k groups (k > 2), and the Wilcoxon signed-rank sum test (WRST) is for
analyzing the differences between the medians of two datasets. To make the analysis more effective,
and to justify that the variations in air quality parameters are due to the COVID-19 pandemic, a
Generalized Linear Model (GLM) was used. The findings revealed that the limitations on human
mobility have lowered emissions, which has improved the air quality in Pakistan. The results of the
study showed that the climatic parameters (precipitation, Tmax, Tmin, and Tmean) have a positive
correlation and wind speed has a negative correlation with NO2 and AOD. This study found a
significant decrease in air pollutants (NO2, SO2, O3, AOD) of 30–40% in Pakistan during the strict
lockdown period. In this duration, the highest drop of about 28% in NO2 concentrations has been
found in Karachi. Total column O3 did not show any reduction during the strict lockdown, but
a minor decline was depicted as 0.38% in Lahore and 0.55% in Islamabad during the loosening
lockdown. During strict lockdown, AOD was reduced up to 23% in Islamabad and 14.46% in Lahore.
The results of KWt and WRST evident that all the mobility indices are significant (p < 0.05) in
nature. The GLM justified that restraining human activities during the lockdown has decreased
anthropogenic emissions and, as a result, improved air quality, particularly in metropolitan areas.

Keywords: urban mobility; COVID-19; lockdown; O3; NO2; PM2.5; SO2; AOD; climate parameters;
air pollution; GLM
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1. Introduction

Coronavirus (COVID-19), a rapidly spreading new disease, struck Wuhan, China, in
December 2019. COVID-19 was declared a “pandemic” by the World Health Organization
(WHO) in March 2020, after swiftly spreading around the world [1]. According to the
WHO, as of 29 April 2020, COVID-19 has affected 3,160,540 people worldwide. It killed
219,253 people in 195 countries, with only a few countries experiencing its peak [2]. There
were only four cases reported in Pakistan until 1 March 2020, but the number of cases
increased due to the movement of people to and from two highly COVID-19 affected
countries, China and Iran. Until 8 February 2021, the total number of confirmed cases was
556,519, with 1008 new cases and 12,066 total deaths documented by the WHO. Because of
the widespread of coronavirus, the WHO recommended that social distancing measures be
implemented globally. Given the current situation, the government of Pakistan declared a
strict lockdown at the beginning of 1 April 2020 that lasted until 30 June 2020. Following
that, a loosening of the lockdown was implemented based on the number of cases in specific
areas. According to the demand for social distancing, it is critical to highlight how society
can overcome disadvantages, resulting in increased social resilience and reorganization
of urban spaces and lifestyles against infectious diseases [3]. The situation in 2020 was
so unusual that it affected almost everyone globally, some to a greater or lesser extent
than others. However, COVID-19 impacted the mobility sector all over the world. Travel
requirements, excursions, and straphanger actions have all been drastically altered to
mitigate the effects of COVID-19 while also achieving the recommended social distancing
principles [4]. To control the spread, 80% of countries have either suspended or significantly
reduced moving operations. Public transportation has been prohibited in China, Pakistan,
India, Egypt, Ukraine, Brazil, Japan, and Argentina for a certain period.

Atmospheric pollution is a hot topic, particularly when it comes to poor air quality.
Poor air quality has a significant impact on the quality of life in urban areas [5]. Trans-
portation smoke emissions play an essential role in urban air pollution, affecting urban air
quality and causing harm to human health [6]. Environmental pollution is a significant
concern around the world, and it is becoming even more critical in developing countries
such as Pakistan due to the massive use of fossil fuels in industries and transportation as
a result of rapidly increasing human demands [7,8]. The most polluted cities with heavy
populations are situated in Asia (Pakistan) [9–11]. Environmental pollution and climatic
patterns are important parameters to consider in addition to mobility issues. Environmen-
tal pollution has been a global threat for the past two decades, and it is reaching a tipping
point, especially in rapidly developing countries such as Pakistan. These pollutants also
contribute to climate change. Concurrently, Afghanistan, Bulgaria, Chile, China, Korea
Republic, Mexico, Peru, and Pakistan are ranked as the most polluted countries in the
world [12]. In the 2018 World Air Quality Report, Pakistan was rated as the second most
polluted country in South Asia [13,14]. Three types of measures were used to evaluate
whether COVID-19 altered the usual patterns [15].

Previous research concluded that the epidemic of severe acute respiratory syndrome
(SARS) was also strongly linked to environmental factors such as temperature, pollutants
such as suspended particle matter (PM2.5), wind speed, and humidity [16,17]. Goods-traffic
emissions are critical, causing air pollution in the urban sector and significantly altering
urban air quality [6]. Transportation accounts for 30% of NOx emissions and 20% of
particulate matter emissions in areas where the human population is at its peak. This large
quantity has an impact on life on Earth, either directly or indirectly [18]. According to
WHO statistics, more than 4.6 million people die each year due to inadequate air quality
protocols around the world. Aerosol particles and atmospheric nitrogen dioxide (NO2)
are the most severe air pollutants in densely populated areas [19], which are typically
produced by the combustion of fossil fuels in industries, transportation, and socioeconomic
fields [20]. Various approaches and strategies have been developed and implemented
to improve the environment over the last few decades. However, we have been unable
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to control air pollution and have failed to meet the ideal WHO air quality standards in
Pakistan [21].

Table 1 presents a summary of previous research. The current study aims to examine
how people’s activities in urban areas have changed since the first coronavirus case was
confirmed in Pakistan and to discuss the differences before and after lockdown and their
dependence on urban characteristics and climatic factors. The main objectives of this study
are to (a) estimate the variability among urban mobility caused by the COVID-19 pandemic,
(b) determine the weather fluctuations that occurred during the lockdown, and (c) assess
the changes in air pollution caused by COVID-19.

Table 1. An outline summary of the previous studies on COVID-19 and climate of Pakistan.

Research Timescale Datasets Study Area Method Findings

Latha et al. [22] 25 March 2020–15
April 2020 Clouds, trace gases Delhi Simulation models

NO2/NH3 is inversely
correlated with cloud

base height, which
causes the upward shift.

Kanga et al. [23] Not mentioned Gauge Jaipur

COVID-19 risk
assessment and

mapping (CRAM)
model

The northeastern and
southeastern zone has

the highest risk for
COVID-19.

Nakajima et al.
[24] 21–29 June 2019 Mobile Spatial

Statistics data Osaka

Advanced
Research WRF

(ARW),
WRF-CM-BEM

models

Temperature has
reduced by 0.13 ◦C in

the urban locality
because of the

Pandemic.

Liu et al. [25] 20 January 2020–2
March 2020 Gauge 30 Cities in

China
Generalized linear

models

If we control population
movement, then

meteorological factors
play an independent role
in transmitting the virus.

Zhang et al. [4] ———- Ambient air
pollutants Ten countries Geospatial

correlation

Air pollutants rapidly
dropped in 2020 due to

lockdown.

Mehmood et al.
[26] 1 June–31 July 2020 Gauge Pakistan GLM model,

Correlation

COVID-19 cases, PM2.5,
and climatic factors are
significantly correlated,

except for Lahore.

Ali et al. [27] January–May 2020 Satellite
observational data Pakistan Non-parametric

Wilcoxon Test

A remarkable reduction
has been observed in

energy in the lockdown
period of Pakistan

Arshad et al. [28] 2015–2019,
March–May 2020

Spatial
Observation data Indo-Pakistan

The major metropolitan
areas showed a

remarkable decrease in
NO2 emissions.

2. Data Collection and Methods
2.1. Study Area

The study area is the southwest Asian country named Pakistan (Figure 1), which is
located at 30.3753◦ North latitude and 69.3451◦ East longitude. It connects the Hindukush
Mountains on the north side and extends from the Pamirs to the Arabian Sea on the
south side. Pakistan is divided into four provinces: Punjab, Sindh, Khyber Pakhtunkhwa
(KPK), and Baluchistan. Pakistan’s climate ranges from arid to humid subtropical, with
five distinct seasons: winter, spring, monsoon, summer, and autumn [29]. The month of
June is the hottest, with a mean daily temperature exceeding 38 ◦C [30]. In comparison
to June, July is the wettest month, with thunderstorms, the possibility of flooding, and
cloudbursts. January, on the other hand, is the most refreshing month of the year [31].
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The monsoon season begins at the end of May. However, the weather is behaving unpre-
dictably when compared to previous years. Khan, in his study [32], elaborated that the
precipitation patterns in Pakistan have become severely uncertain and heavy for shorter
timespans. Extreme weather conditions such as extreme temperature, erratic rainfall, and
climate-related shocks (floods, dust cyclones, and drought) have significantly influenced
Pakistan [33]. The average global temperature has risen by approximately 0.6–0.8 ◦C in
the last decade and is expected to continue rising at a rapid rate [34]. Globally, Pakistan
is the seventh most affected country by climate change [35]. Extreme weather-related
risks cost the country about PKR 365 billion annually because of inadequate water supply,
deforestation, pollution, and soil degradation [36].
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Figure 1. Location map of the study area (Pakistan).

2.2. Datasets Used in the Study

COVID-19 cases, climatic factors, and environmental pollutants were used in this
study. We used total COVID-19 cases, daily new cases, and total deaths between February
2020 and February 2021 to create a pandemic overview. For climatic factors, daily temper-
ature (maximum, minimum, and mean) (◦C), daily precipitation (mm), and daily wind
speed (m/s) have been used. The environmental pollutants data are taken from satellite
observation and described in Table 2.

2.3. Data Analysis

The NASA Giovanni user interface was used to process daily data of tropospheric
NO2, O3, and hourly PM2.5. As previously stated, the Pakistani government declared a
strict lockdown on 1 April 2020. The analytical scheme is divided into three discrete periods
to evaluate the effects of COVID-19: (1) Before lockdown (January–March 2020), (2) Strict
lockdown (April–June 2020), and (3) Loosening lockdown (June 2020) (July 2020–February
2021). Time series maps of various quarantine scenarios were created using the acquired
datasets from January 2020 to February 2021. Furthermore, we used the vigorous data
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analysis pattern described below to identify changes and detect the relationship between
the variables.

Table 2. Detail description of the datasets used in the present study.

Level of
Study Datasets Spatial

Resolution
Temporal

Resolution
Acquisition

Date Sensor/Provider Data Sources

Country
Level

Tropospheric
NO2

0.25◦ Daily
2020–2021
(January–
February)

Ozone
monitoring
instrument

(OMI)

https://giovanni.gsfc.nasa.
gov/giovanni/ (accessed on

30 May 2020)

Dust
Column

Mass
Density
PM2.5

0.5 × 0.625◦ Hourly
2020–2021
(January–
February)

MERRA-2
Model

https://giovanni.gsfc.nasa.
gov/giovanni/ (accessed on

30 May 2020)

Total
Column O3

1◦ Daily
2020–2021
(January–
February)

Ozone
monitoring
instrument

(OMI)

https://giovanni.gsfc.nasa.
gov/giovanni/ (accessed on

30 May 2020)

Urban
mobility

value

Average over
country Daily

2020–2021
(February–
February)

Our world in
data (Google

reports)

https:
//ourworldindata.org/

(assessed on 10 March 2020)

COVID-19
data

Average over
country Daily

2020–2021
(February–
February)

Our world in
data (Google

reports)

https:
//ourworldindata.org/

(assessed on 10 March 2020)

Climate
data

Average over
country Daily

2020–2021
(February–
February)

NASA
Prediction of
Worldwide

Energy
Resources
(POWER)

https://power.larc.nasa.
gov/data-access-viewer/

(assessed on 15 April 2020)

City Level
NO2 0.1◦ Monthly

2016–2020
(January–

December)

Ozone
monitoring
instrument

(OMI)

https://mynasadata.larc.
nasa.gov/ (assessed on 20

December 2020)

Ozone 0.25◦ Monthly
2016–2020
(January–

December)

Ozone
monitoring
instrument

(OMI)

https://mynasadata.larc.
nasa.gov/ (assessed on 20

December 2020)

SO2 0.1◦ Monthly
2016–2020
(January–

December)

Ozone
monitoring
instrument

(OMI)

https://mynasadata.larc.
nasa.gov/ (assessed on 20

December 2020)

Aerosol
Optical
Depth
(AOD)

0.5◦ Monthly
2016–2020
(January–
August)

Visible Infrared
Imaging

Radiometer
Suite (VIIRS)

https://mynasadata.larc.
nasa.gov/ (assessed on 20

December 2020)

2.3.1. Anomaly Changes

The NASA Earth System Data Explorer was used to refine monthly NO2, SO2, O3,
and AOD data. It is a web application that provides a suitable and user-friendly interface
for visualizing, analyzing, and accessing remote sensing data. This study computed daily
anomaly changes using absolute difference.

2.3.2. Pearson Correlation

Pearson correlation has been used to analyze the three types of datasets. We used a
Pearson correlation coefficient test to determine the relationship between the datasets. The
p-value indicated the statistical significance of the association, and the Pearson coefficient

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://ourworldindata.org/
https://ourworldindata.org/
https://ourworldindata.org/
https://ourworldindata.org/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
https://mynasadata.larc.nasa.gov/
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represented the change in the variables, which could be positive or negative. The Pearson
coefficient is calculated as follows:

ρ =
Σ(G − Ĝ)(H − Ĥ)√

Σ(G − Ĝ)
2 Σ(H − Ĥ)

2
(1)

If ρ is +1, it indicates a highly positive relationship between the variables. If ρ is −1, it
shows a highly antagonistic relationship. A zero value indicates that there is no relationship
between variables. The results are presented in Tables 3 and 4.

Table 3. Results of Pearson correlation (ρ) with Urban mobility and Air pollutants.

Parameters R&R G&P Parks TS Workplaces Residential NO2 SO2 O3

R&R 1.000 *
G&P 0.954 * 1.000 *
Parks 0.978 * 0.931 * 1.000 *

TS 0.982 * 0.985 * 0.951 * 1.000 *
Workplaces 0.972 * 0.907 * 0.916 * 0.951 * 1.000 *
Residential −0.981 * −0.899 * −0.958 * −0.937 * −0.970 * 1.000 *

NO2 −0.438 −0.467 −0.313 −0.502 0.130 0.181 1.000 *
SO2 0.225 0.486 0.347 0.482 0.366 −0.223 −0.205 1.000 *
O3 −0.491 −0.636 * −0.576 * −0.538 −0.374 0.417 −0.229 −0.383 1.000 *

G&P = grocery and pharmacy, TS = transit stations, R&R = retailer and recreational places. * Level of significance = 0.05.

Table 4. Pearson Correlation association between air pollutants and climatic parameters.

Parameters NO2 SO2 O3 AOD Tmax Tmean Tmin Precipitation Wind Speed

NO2 1.000 *
SO2 −0.205 1.000 *
O3 −0.229 −0.383 1.000 *

AOD 0.698 0.582 −0.889 * 1.000 *
Tmax 0.899 * −0.445 −0.218 0.579 * 1.000 *
Tmean 0.900 * −0.462 −0.103 0.691 * 0.985 * 1.000 *
Tmin 0.879 * −0.465 −0.001 0.771 * 0.949 * 0.989 * 1.000 *

Precipitation 0.005 −0.394 0.588 * 0.375 0.03 0.123 0.199 1.000 *
Wind Speed −0.301 0.524 −0.048 −0.498 −0.412 −0.477 −0.521 −0.216 1.000 *

* Significance level = 0.05.

2.3.3. Kruskal–Wallis H Test (KWt) and Wilcoxon Signed Rank Sum Test (WRST)

We strongly believe that there was a significant increase/decrease in the mobility
indices during strict lockdown and loosening lockdown. To check the impact of certain
lockdown time on mobility indices, we considered KWt. It is a famous nonparametric test
for comparing the outcomes between more than two independent groups. This test is used
to compare mean ranks of k groups (k > 2) and is sometimes illustrated as an ANOVA with
their ranks. For the massive literature about KWt, see [37–39].

In the case of a significant difference between the mean ranks of the different lockdown
groups, we used WRST for pairwise comparison among mobility trend before lockdown
(BL), during strict lockdown (SL), and during loosening lockdown (LL). WRST is a popular
nonparametric test and is used widely in engineering, environmental, and medical etc. [40,41].
For all analyses, (p < 0.05) is considered significant and the results are shown in Table 5.
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Table 5. Kruskal–Wallis test and Wilcoxon statistics for Pakistan in the period of February 2020–
January 2021.

Parameter BL SL LL Kruskal Wallis Test p-Value

Mean Rank Mean Rank Mean Rank

R&R 247.49 a 76.01 b 208.32 c 127.299 0.001 *
G&P 167.27 a 61.52 b 229.66 c 171.087 0.001 *
Parks 174.39 a 58.30 b 229.97 c 177.974 0.001 *

TS 190.32 a 67.52 b 223.06 c 146.550 0.001 *
Workplaces 268.77 a 87.51 b 199.43 c 112.922 0.001 *
Residential 107.93 a 259.97 b 160.78 c 83.370 0.001 *

Fixed at the * significance level = 0.05. Different lower case super scripts row wise shows the significant (p < 0.05)
difference among lockdown groups by using the Wilcoxon rank-sum test.

2.3.4. Percentage Reduction

The percentage reduction approach is also being used in this study to determine how
much of the air pollutants have been influenced by the COVID-19 lockdown. The monthly
data of air pollutants in 2020 was compared to the same month of the baseline period (mean
2016–2019) to determine how much the data in 2020 increased or decreased in comparison
to the baseline, just as the study of Zhang et al. [4] (Table 6).

Table 6. Percentage changes in NO2, O3, and AOD concentrations when comparing the 2020
lockdown period to the same period in 2016–2019 across the three metropolitan cities of Pakistan.
(Note: AOD data is only available until August 2020).

City Month NO2 O3 AOD Status

% % %

Lahore
January–March 12.09 6.57 −9.11 BL

April–June −0.14 0.23 −14.46 SL
July–December 11.55 −0.38 −7.96 LL

Islamabad
January–March −4.39 6.16 20.44 BL

April–June −11.21 0.55 −22.65 SL
July–December 16.14 −0.55 −14.98 LL

Karachi
January–March −14.06 6.31 −7.66 BL

April–June −27.87 0.67 −13.70 SL
July–December 0.02 0.53 −20.88 LL

2.3.5. Generalized Linear Models (GLM)

To be more precise, to investigate the relationship of COVID-19 cases with climatic
parameters and air pollutants, we used the GLM (Mehmood et al. [26]) (Table 7). The
GLM is a flexible technique with the ordinary least square regression estimation, which
allows for different variables that have error distributions other than a normal distribution.
The characteristics of the GLM model is that, we can estimate the parameters of the
models with the link function. This link function helps us to understand how strong the
variance is for each observation to forecast value. Equations (2) and (3) shows the standard
GLM mathematical expression, whereas the link and mean equation is estimated through
Equations (4) and (5):

yi|b ∼ Dist
(

µi,
(

σ2

wi

))
(2)

g(µ) = Xβ + Zb + δ (3)

Xβ = ln(µ) (4)

µ = exp(Xβ) (5)
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where yi represent the ith element of the response variable vector, whereas b is the random
effect vector. Dist is a conditional distribution of the response variable yi given by b. µ
shows the conditional mean of y given b, where i always represent the ith element of the any
mentioned variable. σ2 depicts the dispersion parameter, and wi represents observational
weight vector. In this study, COVID-19 cases are considered as the dependent variable,
whereas NO2, SO2, O3, and climatic parameters are considered as covariates. The Poisson
distribution and log link function estimate the parameters. We ran the analysis by using the
R software version 3.3.2, and the “MASS” package is further used to obtain the estimates
of the parameter of GLM.

Table 7. Generalized Linear Model (GLM) parameters estimates for Pakistan in the period of Feb. 2019–Jan. 2020.

Parameter B Std. Error 95% Wald Confidence Interval Df p-Value

Lower Upper

(Intercept) 0
Tmax 1706.874 449.482 717.571 2696.176 1.000 0.004 *
Tmean 2297.072 647.926 870.996 3723.149 1.000 0.005 *
Tmin 3078.853 1024.806 823.271 5334.435 1.000 0.013 *

Precipitation 174.018 99.014 −43.911 391.947 1.000 0.109
Wind Speed 14,676.698 3816.019 6277.697 23,075.698 1.000 0.003 *

NO2 54,285.023 12,092.254 27,670.152 80,899.894 1.000 0.001 *
SO2 424,675.359 149,860.398 94,834.848 754,515.871 1.000 0.018 *
O3 128.670 35.046 51.534 205.806 1.000 0.004 *

Dependent Variable: COVID-19 Cases; Model: (Intercept): Covariates: Air pollutants. Temperature, Precipitation, Wind speed. Fixed at the
* significance value p < 0.05.

3. Results and Discussion

Satellite observation of climate and air pollution datasets, COVID-19, and mobility
datasets are analyzed in this study to show how changes in air pollutants from a spa-
tiotemporal proportion caused a change in climate parameters in response to COVID-19
quarantine measures. Variations in air pollution result in changes in climatic parameters.

The air pollutants (NO2, SO2, O3) are correlated with the climate data to assess their
relationship. The findings revealed that temperature and precipitation are positively corre-
lated with tropospheric NO2 concentrations, in contrast to previous studies that showed
mixed results, indicating that temperature was either a positive [42,43] or negative [44]
facet for NO2. Precipitation is usually the cause of NO2 reduction through washout. Many
studies have discovered a negative relationship between precipitation and NO2 [44,45],
but similar to Harkey et al. [46], our study also depicted a positive correlation between
precipitation and tropospheric NO2. The reduction in NO2 due to precipitation might be
exacerbated by an increase in wind speed, so they have a negative association between
them having Pearson coefficient value ρ = −0.301 (Table 4). Similarly, temperature and
precipitation are negatively correlated with SO2 concentration, but wind speed is positively
correlated (ρ = 0.524).

We used three Pakistani metropolitan areas (Islamabad, Lahore, and Karachi) to
visualize the timeseries data influenced by the lockdown. As a baseline period, the monthly
mean air pollutants data (NO2, SO2, O3, AOD) from January 2016 to December 2019 was
considered. This average data was compared to the data obtained in 2020. Following
that, for a city-level analysis, the mean time series data from satellite observations for
three metropolitan areas were used to investigate air pollution variations in response to
the COVID-19 quarantine. From February to March 2020, the area was distinguished by
regular late-winter variability and evidence of spring’s arrival. The period also shows
the fluctuation of wind patterns and the intensity and direction of flow. To determine
whether meteorological conditions existed during the examined period, a brief analysis
was performed by comparing time series data of surface factors affecting the ground
atmosphere at current times [47].
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3.1. COVID-19 and Lockdown Setups in Pakistan

There were only four cases reported in Pakistan as of 1 March 2020 [48]. However,
because of the movement of people to and from other parts of the world, particularly from
China and Iran via the Taftan Border, the number of cases suddenly increased. Furthermore,
the first quarantine was announced only in Sindh province on 23 March 2020. It was later
implemented in other parts of the country as well [30,49]. Protocols were enforced to
prevent the spread of the virus, including the use of masks and sanitizers, social distancing,
and so on. Nonetheless, migrants were returning to their hometowns, making the lockdown
situation impossible. As a result, from mid-March 2020 to mid-April 2020, the cases ranged
from 53 to 1078. On 18 October 2020, there were 323,019 cases and 6654 deaths reported
in Pakistan [50]. To follow that, the number of cases is increasing dramatically in various
parts of the country daily. Figure 2a depicts the new cases data obtained from a Google
search. Figure 2b depicts the total cases documented by the WHO up to 8 February 2021:
556,519 total cases, 1008 new cases, and 12,066 total deaths. Given the current situation, the
government of Pakistan has declared an SL beginning in April 2020 and lasting until June
2020. Following that, an LL was carried out in accordance with the number of cases [51].

Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 2. (a) The new confirmed cases of COVID-19, (b) the total COVID-19 cases, new cases, and total deaths in Pakistan 
during the period Feb 2020–Feb 2021. 

3.2. COVID-19 and Urban Mobility 
The COVID-19 pandemic has impacted the pattern of human mobility [41,52]. The 

approach of substantial constraint has a significant influence on the pattern of demo-
graphic change in economies, groceries and pharmacies, and parks [53]. Nonetheless, the 
impact of lockdown and restricting activities has a positive influence on our environment, 
such as noise reduction, pollution, and improvement in air quality [54,55]. Many reports 
elaborated on how mobility patterns in most countries worldwide have decreased in re-
sponse to an immediate halt to anthropogenic activities due to quarantine protocols [56–
58]. Because of these circumstances, mobility patterns have suffered a severe breakdown. 

This study examines the impact of pandemic quarantine stages on human actions 
using timeseries data. Figure 3 illustrates the variations in the mobility of anthropogenic 
actions over time in Pakistan. The trends in Google mobility reports classified normal mo-
bility movements and actions as follows: parks, retail; and recreation; workplaces, grocery 

Figure 2. (a) The new confirmed cases of COVID-19, (b) the total COVID-19 cases, new cases, and total deaths in Pakistan
during the period February 2020–February 2021.



Atmosphere 2021, 12, 1190 10 of 19

3.2. COVID-19 and Urban Mobility

The COVID-19 pandemic has impacted the pattern of human mobility [41,52]. The
approach of substantial constraint has a significant influence on the pattern of demographic
change in economies, groceries and pharmacies, and parks [53]. Nonetheless, the impact of
lockdown and restricting activities has a positive influence on our environment, such as
noise reduction, pollution, and improvement in air quality [54,55]. Many reports elaborated
on how mobility patterns in most countries worldwide have decreased in response to an
immediate halt to anthropogenic activities due to quarantine protocols [56–58]. Because of
these circumstances, mobility patterns have suffered a severe breakdown.

This study examines the impact of pandemic quarantine stages on human actions
using timeseries data. Figure 3 illustrates the variations in the mobility of anthropogenic
actions over time in Pakistan. The trends in Google mobility reports classified normal
mobility movements and actions as follows: parks, retail; and recreation; workplaces,
grocery and pharmacy; transit stations; and residential. It is undeniable that all operations,
such as transportation, educational institutions, workplaces, industries, and social sites,
were operating normally before quarantine, but after quarantine was imposed, the urban
mobility index dropped dramatically. Similarly, to the study of Shafeeque et al. [59], our
results evidence that the urban mobility trend was reduced by 60–70% in Pakistan during
quarantine. An apparent reduction in public activities of up to 80% as a result of quarantine
enforcement has been observed in Figure 3, but it started to increase again in the LL period.
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On the contrary, the mobility index of residential areas has increased since the quaran-
tine began. As the pandemic began, Pakistan’s mobility index has decreased by 70–90%
in workplaces and 60–85% in transit stations through 25 May 2020 [60]. In Pakistan, all
activities, including public transportation and workplaces, were running on a trial basis
until March 2020, when the government announced an SL [27].

The Google data show a decrease in human mobility patterns and an increase in the
amount of time spent on a daily basis in residential areas [61]. It is obvious that as the cases
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increased, the movement of people was restricted. Therefore, the use of transportation was
reduced enormously. Industries and other workplaces were also not in working conditions,
which resulted in less fossil fuel consumption. Resultantly, we performed a Pearson
correlation between urban mobility and air pollutants, and the results are presented in
Table 3.

Table 5 represents the KWt and WRST results. The data has been divided into three
groups: BF, SL, and LL. At the first step, KWt implies that there is a significant (p < 0.05)
difference between the mean ranks of all three groups of R&R. The results show that mean
rank of the SL is significantly lower than the BL and LL. The same pattern is observed
for the G&P, where all the lockdown groups are significantly (p < 0.05) different from
each other. SL has much lower and more significant (p < 0.05) mean rank values from
other two lockdown groups. It is observed in Table 5 that the mean ranks of the Parks, TS,
Workplaces, and Residential areas are significantly (p < 0.05) different from each other at
different times of lockdown. After the significant results, the WRST is applied to check the
pairwise comparison of the mean ranks of all parameters at different times of lockdown.
The WRST illustrated that there is a significant (p < 0.05) difference among the mean ranks
of BL and SL, BL and LL, and SL and LL.

The results clearly show that urban mobility has significantly reduced during the SL
of all the parameters except in the residential area, where it has increased compared to
BL [52,59]. It is also evident that the mobility has started to rise in the LL compared to the
SL because all the activities started in that period, but it is less than BL.

3.3. COVID-19 Lockdown Impacts on the Eco-Environment
3.3.1. COVID-19 Lockdown Impact on Atmospheric Pollution

Due to the extreme pandemic, air quality has become the primary focus of atmospheric
research. The study considers several changes in air pollutant concentrations because of
reduced human activity [62–64]. The spatial and temporal variations are subsequent to the
lockdown’s impact on air quality. The effects of air pollution on life are complicated. In
addition to pollution source emissions, climatological conditions also have an effect on air
quality [65]. In this study, we used satellite observations of various types of air pollutants,
as shown in Table 2.

(a) NO2

Figure S1 demonstrates the variations in tropospheric column NO2 concentrations.
It manifests the daily time-averaged data of BL (January–March 2020), SL (April–June
2020), and LL (July 2020–February 2021). The maps of tropospheric NO2 concentrations
revealed that the high level of NO2 emissions appeared before the lockdown due to mobility
conditions, and the NO2 concentrations rise across Pakistan from north to south, emerging
from urban activities, transportation, and the industrial sector in Rawalpindi-Islamabad,
Lahore, and Peshawar in the north to Karachi in the south (Figure S1). In the study of
Zheng et al. [66], the concentration of NO2 decreases as the temperature rises (see Figure S4
for temperature behavior (Tmax, Tmin, and Tmean)). Notwithstanding, before the lockdown,
the spatiotemporal patterns of the tropospheric NO2 concentration over Pakistan showed a
relatively smooth pattern [67]. However, during the pandemic lockdown period in 2020, a
decrease in NO2 concentration was discovered. Compared to other provinces, Punjab is
rich in NO2 production due to urbanization, heavy traffic, and industrialization [59,68]. The
European Union Copernicus Program, via the Copernicus Sentinel-5P satellite, released
some new satellite images, claiming that NO2 emissions were down ~40–50% in March–
April 2020 compared to the same time period over Pakistan [69]. The current improvement
in air quality is due to less fossil fuel combustion during the country’s imposed lockdown
measures [69,70]. According to NASA’s Air Quality Space Observation Laboratory, the
generation of energy around Pakistan has decreased by 10–25% during the quarantine
period [71]. Additionally, this study examined the temporal variations in NO2 emissions in
BL, SL, and LL, particularly in three Pakistani metropolitan cities (Lahore, Islamabad, and
Karachi) (Figure 4).
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Figure 4. (a) Tropospheric NO2 situation along with the lockdown scenarios in three metropolitan cities of Pakistan
during the period January 2019–December 2020. (b) Total column ozone concentration along with the lockdown scenarios
in three metropolitan cities of Pakistan during the period January 2019–December 2020. (c) SO2 concentration along
with the lockdown scenarios in three metropolitan cities of Pakistan during the period January 2019–December 2020.
(d)AOD concentration along with the lockdown scenarios in three metropolitan cities of Pakistan during the period January
2019–August 2020.
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(b) Ozone

Ozone (O3) is a gas that occurs naturally at both the ground and the upper levels of
the Earth’s atmosphere (stratosphere) [72]. Nevertheless, stratospheric ozone is considered
“good” because it acts as a barrier to ultraviolet rays heading towards Earth. At the same
time, the same O3 in the troposphere and at ground level is a secondary air pollutant
produced by a variety of actions, including urbanization and industrialization. Although
ozone cleans the environment, it is also a significant greenhouse gas that is increasing due
anthropogenic activities and energy production, contributing to climate change [72]. The
overall change in ozone concentration has been depicted after the SL was implemented.
Figure S2 represents a change in ozone during the SL versus before the lockdown was
imposed. However, when we compared total column ozone before and after the SL, we
could easily see a significant reduction in ozone concentration. This change has only
occurred as a result of the cessation of public transportation.

(c) PM2.5

PM2.5 is hazardous to both the environment and to human health [73–75]. Particulate
matter has high environmental value, but it is also a significant contributor to air pollution,
contributing to climate variability. PM2.5 is emitted from various sources in Pakistan, with
approximately 60% emitted from households, such as wood-burning during the winter,
vehicle smoke, and non-exhaust transportation emissions throughout the year [76,77]. At
the same time, the remainder is attributable to industries. PM2.5 concentrations, similar
to NO2 concentrations, were at their lowest during the SL period compared to previous
years [78]. Figure S3 symbolizes an obvious fluctuation in the spatial extent and magnitude
of PM2.5. Compared to before quarantine, the concentration of PM2.5 dropped dramatically
during the quarantine period (April–June).

(d) City Level Analysis

The SL period (March–June 2020) during the COVID-19 Pandemic caused a decrease in
energy consumption, power generation, and oil demand, which benefited our planet [79].
Figure 4a–d demonstrates the variation in air pollutants during 2020 compared to the
baseline period (2016–2019) in Pakistan’s three major cities: Lahore, Islamabad, and Karachi.
These three cities are developed cities in Pakistan with international airports. A large
number of people came from other countries, primarily China and Iran, which became the
cause of the COVID-19 spread [80]. During the SL period (April–June), all three cities show
a gradual reduction in NO2, Ozone, SO2, and Aerosol Optical Depth (AOD). Furthermore,
when compared to other cities, Karachi showed an exceptional reduction in NO2 emissions.
April 2020 was observed to be the month with the most considerable decrease in NO2
concentration, with a steady recovery to the previous scenario until the end of July [81]. A
remarkable change in NO2 levels was observed in Lahore due to major contributions from
transportation, as transportation is thought to be a major contributor to nitrogen oxide
(NOx) emissions in Pakistan [82].

It has been discovered that the running mean of NO2 value during January–March
2020 (BL) has a fluctuation trend that differs from the average time series of 2016 to
2019. During the SL period (April–June 2020), the time series of average NO2 emissions
over all three cities in Pakistan moves with a slight fluctuation when compared to the
baseline period (2016–2019) [28]. It has been observed that for the cities of Lahore and
Islamabad, the anomaly changes in NO2 emissions from January to March 2020 (before
the lockdown) show a positive trend, demonstrating the high emissions from industrial
sources and transportation compared to previous years. Despite this, anomaly changes in
NO2 emissions from April to June 2020 (SL) show a negative trend due to industrial and
transportation emissions reductions.

For NO2 emissions (1015 molecules/cm2), the orange line represents the year 2020
values compared to the blue line, which shows the average baseline period of 2016 to
2019. The vertical green line divides the quarantine period into three phases. According
to the newly formed reports of NASA (National Aeronautics and Space Administration)
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and the ESA (European Space Agency) and other research in their studies, air pollution
has eloquently decreased across metropolitan and industrialized areas over the last few
months [69,71,83] because of the strict quarantine measures implemented by the govern-
ment [84]. As per the results (Table 6), a consequential reduction of about 0.14% in NO2
concentration has been observed in Lahore, 12% in Islamabad, and 28% in Karachi. Though
exceptions are there, it again started increasing to the previous value in December 2020.

Figure S2 and Figure 4b display the spatial and temporal variations in O3 concentration
for Pakistan and the city-wise distribution. It has established a gradual decrease during SL
(April–June 2020) and the beginning of an LL in July 2020. Compared to the baseline period, a
major reduction in O3 has not been found during the SL. However, after June in the LL period,
a slight reduction was evident in the cities of Pakistan presented in Table 6. Nonetheless, a
significant increase in O3 was observed in Pakistan between March and April 2020 in the
study of [4].

Both natural and anthropogenic processes cause SO2 establishment. It occurs naturally
as a result of volcanic eruptions, and man-made sources include fuel combustion, energy
generation, and metal fusion [85]. Its presence in the lower troposphere layer can reduce
air quality, and it is also a precursor originator of gases, including sulfate aerosols, which
influence cloud reflectiveness. If hydrogen peroxide (H2O2) is available in the atmosphere
along with the presence of O3, it can predominantly oxidize the molecules of SO2 and
eventually produce sulfuric acid (H2SO4), which can further produce sulfate. Furthermore,
sulfates are the mainstay of particulate matter (PM2.5) and account for 11–65% of aerosol
mass [20]. Figure 4c manifests a temporal variation in SO2 concentration in 2020 compared
with the baseline period of 2016–2019. The results show a significant reduction in SO2
concentration through anomaly changes as ~53% in Lahore, ~38% in Islamabad, and ~45%
in Karachi.

Per annum, aerosol particles are released due to anthropogenic activities which give
rise to the hazardous levels of air pollution over the major cities such as Lahore, Islamabad
and Karachi in Pakistan [86,87]. The atmosphere can be considered clean if the value of
AOD is less than 0.1 over the whole atmospheric vertical column. However, the greater
values of AOD, even 1 or higher, designate a very hazy situation and that the air is polluted.
Figure 4d presented the datasets released by NASA, showing a decline in AOD in the year
2020, particularly in April to mid-May compared to the baseline period (2016–2019). As the
datasets are only available until Aug 2020, we have used the monthly mean AOD data for the
years 2016–2019 from January–August as a baseline period for a well-defined comparison.
The reduction in AOD is in accordance with the pandemic quarantine on account of the lower
emission of particles (such as NOX, SOX). However, an immense reduction in AOD, such as
14% in Lahore, 23% in Islamabad, and 14% in Karachi, has been observed.

3.3.2. COVID-19 Lockdown and Climatic Parameters

As discussed in the previous section, the lockdown situation in Pakistan reduces air
pollutants and greenhouse gas (GHG) emissions, which ultimately leads to variations in
climatic parameters [88]. Both COVID-19 and weather patterns are global issues with
extraordinary and highly uncertain consequences [89,90]. Aside from changes in urban
mobility, climatic factors have been impacted by the COVID-19 pandemic because of
reduced transportation use. In Table 4, the climatic parameters are correlated with air
pollutants to find out the change. The results revealed that temperature and precipitation
are positively correlated with NO2 and AOD, but wind speed is negatively correlated.
Temperature also showed a significant (p < 0.05) change with NO2 and AOD. Opposite
to the wind speed, temperature and precipitation showed a negative association with
SO2. However, temperature and wind speed depicted a negative association with O3, and
precipitation showed a positive and significant (p < 0.05) association. We have performed a
GLM between COVID-19 and air pollution and climatic parameters. The results in Table 7
illustrate that all the air pollutants and climatic parameters show a significant (p < 0.05)
change, except precipitation.
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Figure S4 illustrates a series distribution of COVID-19 cases and climatic parameters
(Temperature, Precipitation, and Windspeed) along with the lockdown status in Pakistan.
The curve of daily COVID-19 cases has reached a peak during June, which has a good
trend with wind speed and precipitation. It is possible to see how precipitation abruptly
decreased in SL situations. When the wind intensity is considered, comparable patterns of
flow reduction can be detected for Pakistan’s SL and LL periods.

Other than that, Tmax, Tmin, and Tmean have the opposite direction to the COVID-19
cases data. It does not exhibit more critical fluctuations, although it is a crucial factor
while discussing the influence of COVID-19. The relationship between temperature and
COVID-19 cases offers valuable information in terms of its prevalence across Pakistan. It
has been observed that COVID-19 cases have a lesser influence on temperature (Tmax, Tmin,
and Tmean). Through Figure S4, it can be clearly observed that the values of temperature
(Tmax, Tmin, and Tmean) were higher during the BL period, and as COVID-19 began, it had
an abrupt decline. However, during the SL, when COVID-19 cases were at their peak, the
temperature (Tmax, Tmin, and Tmean) also showed a sudden rise (35%) due to an average
40% reduction in tropospheric NO2 concentration during the SL period [66].

4. Conclusions

The SL measures implemented across Pakistan not only halted the spread of the COVID-
19 virus but also had a positive impact on the environment. The study’s hypothesis was
that by restricting human movement, goods-trafficking, and social and industrial activities,
the air pollution has been reduced significantly. Because of that, changes in air pollution
caused by a ~20–30% reduction in NO2 emissions have also predisposed the weather to
change positively. The findings of this study show that since April 2020, there has been a
consequential decrease (~20–30%) in air pollution in Pakistan, such as Karachi seeing a 28%
decrease in NO2 concentrations, and a 23% decrease in AOD in Islamabad during the SL. In
contrast, a minor 0.55% decrease in O3 is evident in Islamabad during the LL.

Furthermore, the regression model investigated a significant (p < 0.05) reduction in
SO2, O3, and NO2 emissions and climatic parameters except precipitation due to the less
reliance on fossil fuels, which justified our reduction analysis results. The results of the
KWt and the WRST revealed that the mean rank of the SL is significantly lower than the
BL and LL only because of restrictions on human movement.

According to the findings of this study, some strategies have been recommended to
improve urban air quality management, which include:

# The government of Pakistan should impose such stringent restrictions on the use of
fossil fuels. Similar to China, they should promote short individual trips on foot or by
switching vehicles (e.g., motorbikes and Qingqi) to bicycles and scooters.

# Catalytic converters are required in all large vehicles.
# The personal mode of transportation must be replaced by group travel or local buses.
# Controlling the emissions from large point sources.
# The conversion of diesel-fueled buses and vans to CNG and the installation of diesel

oxidation catalysts in metro and other big city buses.
# The local government should impose some brief lockdowns (1–2 days) once a month

on fossil fuel consumption and human transportation, particularly in Lahore, which
has experienced the deadliest smog in the last five years.

In response to the results of the KWt and the WRST, the authors have suggested that
policymakers follow the Sustainable Urban Mobility Plan (SUMP) approach for urban mobility
planning, which is a strategy document meant to fulfill the demand for mobility while also
maintaining an appropriate quality of life for inhabitants. This technique can also assist in
mitigating the harmful effects of urban transportation. The SUMP process can be aided by a
transport model known as the Multilevel Model of Transport Systems (MST). The involvement
of citizens and stakeholders should be included throughout the planning process. The article
proposed using the MST at various levels of planning and modelling and describing the
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consequences. The use of a hierarchical layout will assist in fully realizing the transport
model’s potential to increase the efficacy of urban mobility planning.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12091190/s1, Figure S1: Tropospheric NO2 situation along with the lockdown scenarios
in Pakistan during the period January 2020–February 2021, Figure S2: O3 situation along with the
lockdown scenarios in Pakistan during the period January 2020–February 2021, Figure S3: PM2.5
situation along with the lockdown scenarios in Pakistan during the period January 2020–February
2021, Figure S4: Changes in climatic components: BL, SL, and LL in Pakistan during the period of
February 2020–February 2021.
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