The Impact of the El Niño Southern Oscillation on the Number of Visitors to Natural Attractions: The Moderating Effect of Disposable Personal Income, per Capita GDP and Population
Abstract
:1. Introduction
2. Literature Review
2.1. The Impact of ENSO on Natural Tourism
2.2. The Moderating Effect of Economic Factors (Personal Disposable Income and per Capita GDP)
2.3. Moderating Effect of Population Size
3. Methods
3.1. Data and Variables
3.1.1. Dependent Variable: The Number of Tourists
3.1.2. Independent Variable: ENSO Index
3.1.3. Control Variables
3.2. Empirical Analysis Results
3.2.1. Empirical Econometric Model
3.2.2. Endogeneity
4. Results and Discussion
4.1. Does ENSO Affect the Number of Visitors to Natural Attractions?
4.2. Does per Capita Disposable Income Have a Moderating Effect on the Relationship between ENSO and the Number of Visitors to Natural Attractions?
4.3. Does the Population Size Have a Moderating Effect on the Relationship between ENSO and the Number of Visitors to Natural Attractions?
4.4. Does per Capita GDP Have a Moderating Effect on the Relationship between ENSO and the Number of Visitors to Natural Attractions?
4.5. Robustness Check
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becken, S.; Hay, J.E. Climate Change and Tourism: From Policy to Practice; Routledge: Oxfordshire, UK, 2012; pp. 1–280. [Google Scholar]
- Becken, S.; Wilson, J. The impacts of weather on tourist travel. Tour. Geogr. 2013, 15, 620–639. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, S.; Zhang, J.; Huang, P. The role of background SST changes in the ENSO-driven rainfall variability revealed from the atmospheric model experiments in CMIP5/6. Atmos. Res. 2021, 261, 105732. [Google Scholar] [CrossRef]
- Singh, S.; Srivastava, P.; Abebe, A.; Mitra, S. Baseflow response to climate variability induced droughts in the Apalachicola–Chattahoochee–Flint River Basin, U.S.A. J. Hydrol. 2015, 528, 550–561. [Google Scholar] [CrossRef]
- McCullum, A.J.; Gurdak, J. Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. J. Hydrol. 2014, 519, 1939–1952. [Google Scholar]
- Karnauskas, K.B.; Donnelly, J.P.; Barkley, H.C.; Martin, J.E. Coupling between air travel and climate. Nat. Clim. Chang. 2015, 5, 1068–1073. [Google Scholar] [CrossRef]
- Mortlock, T.R.; Goodwin, I. Impacts of enhanced central Pacific ENSO on wave climate and headland-bay beach morphology. Cont. Shelf Res. 2016, 120, 14–25. [Google Scholar] [CrossRef]
- Masters, P.M. Holocene sand beaches of southern California: ENSO forcing and coastal processes on millennial scales. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 232, 73–95. [Google Scholar] [CrossRef]
- Kronenberg, K.; Fuchs, M. Aligning tourism’s socio-economic impact with the United Nations’ sustainable development goals. Tour. Manag. Perspect. 2021, 39, 100831. [Google Scholar] [CrossRef]
- Song, H.; Dwyer, L.; Li, G.; Cao, Z. Tourism economics research: A review and assessment. Ann. Tour. Res. 2012, 39, 1653–1682. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Liu, J. The spatial mobility of rural tourism workforce: A case study from the micro analytical perspective. Habitat Int. 2021, 110, 102322. [Google Scholar] [CrossRef]
- Dogru, T.; Marchio, E.A.; Bulut, U.; Suess, C. Climate change: Vulnerability and resilience of tourism and the entire economy. Tour. Manag. 2019, 72, 292–305. [Google Scholar] [CrossRef]
- Morin, S.; Samacoïts, R.; François, H.; Carmagnola, C.M.; Abegg, B.; Demiroglu, O.C.; Pons, M.; Soubeyroux, J.-M.; Lafaysse, M.; Franklin, S.; et al. Pan-European meteorological and snow indicators of climate change impact on ski tourism. Clim. Serv. 2021, 22, 100215. [Google Scholar] [CrossRef]
- Agnew, M.D.; Palutikof, J. Impacts of short-term climate variability in the UK on demand for domestic and international tourism. Clim. Res. 2006, 31, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Maddison, D. In Search of Warmer Climates? The Impact of Climate Change on Flows of British Tourists. Clim. Chang. 2001, 49, 193–208. [Google Scholar] [CrossRef]
- Kim, T.; Shin, J.-Y.; Kim, S.; Heo, J.-H. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. J. Hydrol. 2018, 557, 726–739. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G. Climate variability, change and potential impacts on tourism: Evidence from the Zambian side of the Victoria Falls. Environ. Sci. Policy 2018, 84, 113–123. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Y.; Jing, W.; Liu, J.; Du, M.; Wang, Y.; Liu, M. Association between meteorological factors and daily new cases of COVID-19 in 188 countries: A time series analysis. Sci. Total Environ. 2021, 780, 146538. [Google Scholar] [CrossRef]
- de la Casa, A.; Ovando, G.; Díaz, G. Linking data of ENSO, NDVI-MODIS and crops yield as a base of an early warning system for agriculture in Córdoba, Argentina. Remote Sens. Appl. Soc. Environ. 2021, 22, 100480. [Google Scholar] [CrossRef]
- An-Vo, D.-A.; Mushtaq, S.; Reardon-Smith, K.; Kouadio, L.; Attard, S.; Cobon, D.; Stone, R. Value of seasonal forecasting for sugarcane farm irrigation planning. Eur. J. Agron. 2019, 104, 37–48. [Google Scholar] [CrossRef]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and interannual complementarities of renewable energy sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Anyamba, A.; Chretien, J.-P.; Small, J.; Tucker, C.J.; Linthicum, K.J. Developing global climate anomalies suggest potential disease risks for 2006–2007. Int. J. Health Geogr. 2006, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oduber, M.; Ridderstaat, J. Impacts of Cyclic Patterns of Climate on Fluctuations in Tourism Demand: Evidence from Aruba. J. Tour. Res. Hosp. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ewis, E.-S. Exploring Changes in the Agricultural Calendar as a Response to Climate Variability in Egypt. In Climate Change Impacts on Agriculture and Food Security in Egypt; Springer Water: Cham, Switzerland, 2020; pp. 249–271. [Google Scholar] [CrossRef]
- Meng, L.; Ma, Y. On the relationship of lake-effect snowfall and teleconnections in the Lower Peninsula of Michigan, USA. J. Great Lakes Res. 2021, 47, 134–144. [Google Scholar] [CrossRef]
- Ilyas, S.; Xu, X.; Jia, G.; Zhang, A. Interannual Variability of Global Wetlands in Response to El Niño Southern Oscillations (ENSO) and Land-Use. Front. Earth Sci. 2019, 7, 289. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kadir, N.; Nayan, S.; Abdullah, M. The Causal Relationship Between Tourism and Economic Growth in Malaysia: Evidence from Multivariate Causality Tests. Encontros Cient.—Tour. Manag. Stud. 2010, 6, 16–24. [Google Scholar]
- Snieska, V.; Barkauskienė, K.; Barkauskas, V. The Impact of Economic Factors on the Development of Rural Tourism: Lithuanian Case. Procedia—Soc. Behav. Sci. 2014, 156, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Scarlett, H.G. Tourism recovery and the economic impact: A panel assessment. Res. Glob. 2021, 3, 100044. [Google Scholar] [CrossRef]
- del P. Pablo-Romero, M.; Molina, J.A. Tourism and economic growth: A review of empirical literature. Tour. Manag. Perspect. 2013, 8, 28–41. [Google Scholar] [CrossRef]
- Todd, S. Self-concept: A tourism application. J. Consum. Behav. 2001, 1, 184–196. [Google Scholar] [CrossRef]
- Ma, M.; Hassink, R. An evolutionary perspective on tourism area development. Ann. Tour. Res. 2013, 41, 89–109. [Google Scholar] [CrossRef]
- Faulkner, B.H.W. Developing strategic approaches to tourism destination marketing: The Australian experience. In Global Tourism, 3rd ed.; Routledge: London, UK, 2005; pp. 326–345. [Google Scholar] [CrossRef]
- Eugenio-Martin, J.L.; Cazorla-Artiles, J.M. The shares method for revealing latent tourism demand. Ann. Tour. Res. 2020, 84, 102969. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G.; Sun, X.; Li, J. Forecasting the number of inbound tourists with Google Trends. Procedia Comput. Sci. 2019, 162, 628–633. [Google Scholar] [CrossRef]
- Dergiades, T.; Mavragani, E.; Pan, B. Google Trends and tourists’ arrivals: Emerging biases and proposed corrections. Tour. Manag. 2018, 66, 108–120. [Google Scholar] [CrossRef]
- Siliverstovs, B.; Wochner, D.S. Google Trends and reality: Do the proportions match?: Appraising the informational value of online search behavior: Evidence from Swiss tourism regions. J. Econ. Behav. Organ. 2018, 145, 1–23. [Google Scholar] [CrossRef]
- Bokelmann, B.; Lessmann, S. Spurious patterns in Google Trends data—An analysis of the effects on tourism demand forecasting in Germany. Tour. Manag. 2019, 75, 1–12. [Google Scholar] [CrossRef]
- Dimanche, F.; Samdahl, D. Leisure as symbolic consumption: A concep-tualization and prospectus for future research. Leis. Sci. 1994, 16, e119–e129. [Google Scholar] [CrossRef]
- Bilen, M.; Yilanci, V.; Eryüzlü, H. Tourism development and economic growth: A panel Granger causality analysis in the frequency domain. Curr. Issues Tour. 2015, 20, 27–32. [Google Scholar] [CrossRef]
- Wang, T.; Wu, P.; Ge, Q.; Ning, Z. Ticket prices and revenue levels of tourist attractions in China: Spatial differentiation between prefectural units. Tour. Manag. 2021, 83, 104214. [Google Scholar] [CrossRef]
- Goh, C.; Law, R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tour. Manag. 2002, 23, 499–510. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P.; Matzarakis, A. Seasonal effect of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Lim, C.; McAleer, M. Monthly seasonal variations: Asian tourism to Australia. Ann. Tour. Res. 2001, 28, 68–82. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
Variable | Describe |
---|---|
LnALLi,t | In year t, the logarithm of the number of people searched for natural attraction i on Google Trends |
NINO12i,t | In year t, the proxy variable of climate index of natural scenic spot i |
lnDPIi,t | In year t, the personal disposable income of the state where natural attraction i is located |
lnGDPi.t | In year t, the GDP of the state where the natural attraction i is located |
lnpopulationi,t | In year t, the population of the state where the natural attraction i is located |
Variables | lnALL | NINO12 | lnDPI | lnpopulation | lnGDP |
---|---|---|---|---|---|
lnALL | 1.000 | ||||
NINA12 | 0.105 *** | 1.000 | |||
lnDPI | −0.245 *** | 0.042 | 1.000 | ||
lnpopulation | −0.292 *** | 0.011 | 0.991 *** | 1.000 | |
lnGDP | −0.273 *** | 0.016 | 0.995 *** | 0.992 *** | 1.000 |
Variables | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
ALL | 768 | 1761 | 884.4 | 100 | 4122 |
NINO12 | 768 | −0.0841 | 0.556 | −1.067 | 1.433 |
GDP | 768 | 801,946 | 941,142 | 31,567 | 2,800,505.4 |
DPI | 768 | 588,827 | 694,220 | 16,262 | 2,267,563.9 |
population | 768 | 14,113,752.6 | 15,270,379.6 | 509,106 | 39,437,610 |
Variable | SYS-GMM | ||
---|---|---|---|
(5) | (6) | (7) | |
lnALLi,t−1 | 0.3250 *** | 0.3240 *** | 0.3260 *** |
(0.0867) | (0.0862) | (0.0863) | |
NINO12t | −0.5750 ** | −0.7620 *** | −0.5700 ** |
(0.2350) | (0.2930) | (0.2440) | |
NINO12t × lnDPIi,t | 0.0439 ** | ||
(0.0192) | |||
NINO12t × lnpopulationi,t | 0.0468 ** | ||
(0.0190) | |||
NINO12t × lnGDPi,t | 0.0426 ** | ||
(0.0196) | |||
Constant | 4.762 *** (0.5960) | 4.782 *** (0.5930) | 4.766 *** (0.595) |
Observations | 720 | 720 | 720 |
Time fixed effect | YES | YES | YES |
No. of firms | 48 | 48 | 48 |
No. of instr. variables | 31 | 31 | 31 |
Wald stat. | 49,875.6000 | 50,128.8000 | 50,317.8000 |
Hansen test | 0.0663 | 0.0721 | 0.0712 |
AR(1) | 0.0000 | 0.0000 | 0.0000 |
AR(2) | 0.2030 | 0.2030 | 0.2020 |
Variable | Consider the Lag Term | Shorten the Sample Period | ||||
---|---|---|---|---|---|---|
(1) DPI | (2) lnpopulation | (3) DPI | (4) DPI | (5) lnpopulation | (6) DPI | |
lnALLi,t−1 | 0.3010 *** | 0.2880 *** | 0.2900 *** | 0.3490 *** | 0.3470 *** | 0.3480 *** |
(0.0795) | (0.0788) | (0.0771) | (0.1300) | (0.1300) | (0.1310) | |
NINO12t | −0.6210 ** | −0.8220 *** | −0.6130 ** | |||
(0.2450) | (0.3120) | (0.2570) | ||||
NINO12t × lnDPIi,t | 0.0478 ** | |||||
(0.0201) | ||||||
NINO12t × lnpopulationi,t | 0.0507 ** | |||||
(0.0202) | ||||||
NINO12t × lnGDPi,t | 0.0460 ** | |||||
(0.0206) | ||||||
NINO12t−1 | −1.1780 ** | −2.0210 ** | −1.5710 ** | |||
(0.5300) | (0.8120) | (0.6260) | ||||
NINO12t−1 × L.lnDPIi,t−1 | 0.0949 ** | |||||
(0.0433) | ||||||
NINO12t−1 × L.lnpopulationi,t−1 | 0.1290 ** | |||||
(0.0521) | ||||||
NINO12t−1 × L.lnGDPi,t−1 | 0.1240 ** | |||||
(0.0499) | ||||||
Constant | 4.9580 *** | 5.0590 *** | 5.0450 *** | 4.6050 *** | 4.6290 *** | 4.6200 *** |
(0.5620) | (0.5590) | (0.5480) | (0.8740) | (0.8740) | (0.8860) | |
Observations | 720 | 720 | 720 | 528 | 528 | 528 |
Time fixed effect | YES | YES | YES | YES | YES | YES |
No. of firms | 48 | 48 | 48 | 48 | 48 | 48 |
No. of instr. variables | 31 | 31 | 31 | 23 | 23 | 23 |
Wald stat. | 32,904.2000 | 30,459.3000 | 30,307.9000 | 43,451.9000 | 43,516.0000 | 44,078.2000 |
Hansen test | 0.0718 | 0.0782 | 0.0839 | 0.0704 | 0.0708 | 0.0726 |
AR(1) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
AR(2) | 0.4300 | 0.7450 | 0.7170 | 0.1420 | 0.1430 | 0.1440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Gong, K.; Tang, Q.; Dong, Y.; Xu, W. The Impact of the El Niño Southern Oscillation on the Number of Visitors to Natural Attractions: The Moderating Effect of Disposable Personal Income, per Capita GDP and Population. Atmosphere 2021, 12, 1189. https://doi.org/10.3390/atmos12091189
Xiong L, Gong K, Tang Q, Dong Y, Xu W. The Impact of the El Niño Southern Oscillation on the Number of Visitors to Natural Attractions: The Moderating Effect of Disposable Personal Income, per Capita GDP and Population. Atmosphere. 2021; 12(9):1189. https://doi.org/10.3390/atmos12091189
Chicago/Turabian StyleXiong, Li, Ke Gong, Qingyun Tang, Yuanxiang Dong, and Wei Xu. 2021. "The Impact of the El Niño Southern Oscillation on the Number of Visitors to Natural Attractions: The Moderating Effect of Disposable Personal Income, per Capita GDP and Population" Atmosphere 12, no. 9: 1189. https://doi.org/10.3390/atmos12091189
APA StyleXiong, L., Gong, K., Tang, Q., Dong, Y., & Xu, W. (2021). The Impact of the El Niño Southern Oscillation on the Number of Visitors to Natural Attractions: The Moderating Effect of Disposable Personal Income, per Capita GDP and Population. Atmosphere, 12(9), 1189. https://doi.org/10.3390/atmos12091189