Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Locations
2.2. Road Dust Samplings
2.3. Chemical Analysis
2.4. Enrichment Factors
2.5. Principal Component Analysis (PCA)
3. Results and Discussion
3.1. RD10 Levels
3.2. Chemical Profile
3.3. Source Exploration by EFs
3.4. Factors Associated to Sources in PCA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2014, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Charron, A.; Polo-Rehn, L.; Besombes, J.-L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.-L. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. Discuss. 2019, 19, 5187–5207. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Evtyugina, M.; Vicente, A.; Vicente, E.; Nunes, T.; Silva, P.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Guttikunda, S. Estimating Health Impacts of Urban Air Pollution. Public Health 2008, 16. Available online: https://urbanemissions.info/wp-content/uploads/docs/SIM-06-2008.pdf (accessed on 20 August 2021).
- Hetem, I.G.; de Fatima Andrade, M. Characterization of Fine Particulate Matter Emitted from the Resuspension of Road and Pavement Dust in the Metropolitan Area of São Paulo, Brazil. Atmosphere 2016, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2004, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, E.; Vicente, A.M.; Rienda, I.C.; Tomé, M.; Querol, X.; Amato, F. Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 2020, 737, 139596. [Google Scholar] [CrossRef]
- Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-suspension of road dust: Contribution, assessment and control through dust suppressants—A review. Int. J. Environ. Sci. Technol. 2018, 16, 1717–1728. [Google Scholar] [CrossRef]
- Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. [Google Scholar] [CrossRef]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artinano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2014, 75, 151–158. [Google Scholar] [CrossRef]
- Vlasov, D.; Kosheleva, N.; Kasimov, N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2020, 761, 143267. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Zhang, Y.; Li, F.; Fang, X.; Mao, H. Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil. Particuology 2019, 44, 146–152. [Google Scholar] [CrossRef]
- Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Pollitt, K.G.; Harrison, R.M. The PM 10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ. 2015, 531, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Pachón, J.E.; Galvis, B.; Lombana, O.; Carmona, L.G.; Fajardo, S.; Rincón, A.; Meneses, S.; Chaparro, R.; Nedbor-Gross, R.; Henderson, B. Development and Evaluation of a Comprehensive Atmospheric Emission Inventory for Air Quality Modeling in the Megacity of Bogotá. Atmosphere 2018, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Pachon, J.E.; Vanegas, S.; Saavedra, C.; Amato, F.; Silva, L.F.O.; Blanco, K.; Chaparro, R.; Casas, O.M. Evaluation of factors influencing road dust loadings in a Latin American urban center. J. Air Waste Manag. Assoc. 2021, 71, 268–280. [Google Scholar] [CrossRef]
- Ramírez, O.; de la Campa, A.M.S.; Amato, F.; Moreno, T.; Silva, L.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2018, 652, 434–446. [Google Scholar] [CrossRef]
- Ramírez, O.; da Boit, K.; Blanco, E.; Silva, L. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban. Clim. 2020, 33, 100655. [Google Scholar] [CrossRef]
- Bogotá Cómo Vamos. Informe de Calidad de Vida En Bogotá 2018; Bogotá Cómo Vamos: Bogotá, Colombia, 2019. [Google Scholar]
- Secretaría Distrital de Ambiente. Inventario de Emisiones de Bogotá, Contaminantes Atmosféricos 2018; Secretaría Distrital de Ambiente: Bogotá, Colombia, 2020.
- Ramírez, O.; de la Campa, A.S.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; de la Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [Google Scholar] [CrossRef] [PubMed]
- DANE. Omisión Censal: Nivel Municipal y Departamental; DANE: Bogotá, Colombia, 2019.
- Cuesta-Mosquera, A.P.; Wahl, M.; Acosta-López, J.G.; García-Reynoso, J.A.; Aristizábal-Zuluaga, B.H. Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustain. Cities Soc. 2019, 52, 101852. [Google Scholar] [CrossRef]
- González, C.; Gómez, C.; Rojas, N.; Acevedo, H.; Aristizábal, B. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos. Environ. 2016, 152, 279–289. [Google Scholar] [CrossRef]
- Universidad Nacional de Colombia. Corpocaldas Aplicación de Herramientas de Simulación Atmosférica En El Estudio de La Calidad Del Aire En Manizales—Informe Final Convenio Interadministrativo No. 107-2018; Universidad Nacional de Colombia: Bogotá, Colombia, 2019. [Google Scholar]
- Carn, S.A.; Fioletov, V.E.; McLinden, C.; Li, C.; Krotkov, N. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, srep44095. [Google Scholar] [CrossRef] [Green Version]
- Manizales Cómo Vamos. Informe de Calidad de Vida Manizales 2019; Manizales Cómo Vamos: Bogotá, Colombia, 2019. [Google Scholar]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Trejos, E.M.; Silva, L.F.; Hower, J.C.; Flores, E.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. [Google Scholar] [CrossRef]
- Murillo, J.H.; Marín, J.F.R.; Álvarez, V.M.; Arias, D.S.; Guerrero, V.H.B. Chemical characterization of filterable PM 2.5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa Rica. Atmos. Pollut. Res. 2017, 8, 709–717. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment. In Factsheets for the Geochemist and Environmental Scientist, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72018-5. [Google Scholar]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1217–1232. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Earth Sci. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; González, J.C.; Querol, X. Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmos. Environ. 2013, 77, 711–717. [Google Scholar] [CrossRef]
- Padoan, E.; Ajmone-Marsan, F.; Querol, X.; Amato, F. An empirical model to predict road dust emissions based on pavement and traffic characteristics. Environ. Pollut. 2017, 237, 713–720. [Google Scholar] [CrossRef]
- Kong, S.; Ji, Y.; Lu, B.; Chen, L.; Han, B.; Li, Z.; Bai, Z. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 2011, 45, 5351–5365. [Google Scholar] [CrossRef]
- Ramírez, O.; de la Campa, A.M.S.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 2020, 710, 136344. [Google Scholar] [CrossRef]
- Vega, E.; Mugica, V.; Reyes, E.; Sánchez, G.; Chow, J.; Watson, J. Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 2001, 35, 4033–4039. [Google Scholar] [CrossRef]
- Herrera Ardila, M.C. Suelos Derivados de Cenizas Volcánicas En Colombia: Estudio Fundamental e Implicaciones En Ingeniería. Rev. Int. Desastres Nat. Accid. Infraestruct. Civ. 2006, 6, 167. [Google Scholar]
- Cheng, Y.; Lee, S.-C.; Gu, Z.; Ho, K.F.; Zhang, Y.; Huang, Y.; Chow, J.C.; Watson, J.; Cao, J.; Zhang, R. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 2013, 18, 96–104. [Google Scholar] [CrossRef]
- Karanasiou, A.; Diapouli, E.; Cavalli, F.; Eleftheriadis, K.; Viana, M.; Alastuey, A.; Querol, X.; Reche, C. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos. Meas. Tech. 2011, 4, 2409–2419. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.D.; de la Campa, A.M.S.; Artinano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Wiseman, C.L.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef]
- Findeter. Plan Maestro de Movilidad de Manizales; Findeter: Bogotá, Colombia, 2017.
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Manno, E.; Varrica, D.; Dongarrà, G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmos. Environ. 2006, 40, 5929–5941. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, J.; Wang, S.; Fu, X.; Zheng, H. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [Google Scholar] [CrossRef] [Green Version]
ID Point | Length | Latitude | Sampling Date | Classification | RD10 (mg/m2) |
---|---|---|---|---|---|
Bogotá | |||||
1 | 74°03′59.07″ W | 4°45′34.48″ N | 19 December 2017 | Commercial Land Use | 3.26 |
2 | 74°01′28.05″ W | 4°45′21.12″ N | 19 December 2017 | Residential Land Use | 7.04 |
3 | 74°01′56.41″ W | 4°43′12.28″ N | 20 December 2017 | Residential Land Use | 14.31 |
4 | 74°02′50.84″ W | 4°41′14.78″ N | 20 December 2017 | Residential Land Use | 18.92 |
5 | 74°03′58.63″ W | 4°38′22.69″ N | 22 December 2017 | Commercial Land Use | 7.06 |
6 | 74°04′14.20″ W | 4°39′26.73″ N | 27 January 2018 | Commercial Land Use | 10.33 |
7 | 74°05′38.62″ W | 4°41′18.01″ N | 26 January 2018 | Commercial Land Use | 4.60 |
8 | 74°07′25.07″ W | 4°43′27.55″ N | 26 March 2018 | Commercial Land Use | 45.75 |
9 | 74°09′11.51″ W | 4°40′31.39″ N | 26 January 2018 | Industrial Land Use | 1.82 |
10 | 74°07′25.32″ W | 4°39′07.38″ N | 26 January 2018 | Industrial Land Use | 2.41 |
11 | 74°07′11.76″ W | 4°38′07.65″ N | 24 January 2018 | Industrial Land Use | 7.08 |
12 | 74°05′52.42″ W | 4°37′33.33″ N | 24 January 2018 | Industrial Land Use | 8.35 |
13 | 74°04′36.13″ W | 4°36′29.91″ N | 22 December 2017 | Commercial Land Use | 12.07 |
14 | 74°06′01.31″ W | 4°36′11.21″ N | 21 December 2017 | Residential Land Use | 9.40 |
15 | 74°08′13.84″ W | 4°35′48.87″ N | 23 January 2018 | Industrial Land Use | 23.14 |
16 | 74°10′06.66″ W | 4°37′47.06″ N | 3 March 2018 | Residential Land Use | 21.15 |
17 | 74°10′38.49″ W | 4°35′51.84″ N | 27 January 2018 | Industrial Land Use | 6.05 |
18 | 74°07′33.38″ W | 4°34′09.98″ N | 25 January 2018 | Commercial Land Use | 10.65 |
19 | 74°05′14.33″ W | 4°34′11.51″ N | 25 January 2018 | Residential Land Use | 16.71 |
20 | 74°07′02.07″ W | 4°31′00.78″ N | 27 March 2018 | Residential Land Use | 6.04 |
Manizales | |||||
1 | 75°27′05.00″ W | 5°01′40.58″ N | 2 September 2019 | Industrial Land Use | 26.75 |
2 | 75°27′04.86″ W | 5°01′58.84″ N | 20 August 2019 | Industrial Land Use | 11.72 |
3 | 75°27′41.15″ W | 5°02′10.10″ N | 2 September 2019 | Industrial Land Use | 0.77 |
4 | 75°27′56.27″ W | 5°01′55.02″ N | 31 July 2019 | Mixed Land Use | 8.54 |
5 | 75°27′59.94″ W | 5°02′02.87″ N | 30 August 2019 | Residential Land Use | 2.52 |
6 | 75°28′52.54″ W | 5°02′01.90″ N | 28 August 2019 | Mixed Land Use | 1.74 |
7 | 75°29′01.39″ W | 5°02′49.34″ N | 9 August 2019 | Mixed Land Use | 1.96 |
8 | 75°28′54.88″ W | 5°03′05.36″ N | 8 August 2019 | Mixed Land Use | 7.19 |
9 | 75°29′24.04″ W | 5°03′07.42″ N | 28 August 2019 | Residential Land Use | 2.22 |
10 | 75°29′12.30″ W | 5°03′27.14″ N | 9 August 2019 | Mixed Land Use | 2.72 |
11 | 75°29′38.04″ W | 5°03′35.71″ N | 30 August 2019 | Mixed Land Use | 3.17 |
12 | 75°30′06.37″ W | 5°03′50.11″ N | 20 August 2019 | Mixed Land Use | 2.73 |
13 | 75°29′55.54″ W | 5°04′12.86″ N | 22 August 2019 | Mixed Land Use | 3.57 |
14 | 75°30′20.88″ W | 5°03′57.53″ N | 6 August 2019 | Mixed Land Use | 6.46 |
15 | 75°30′38.84″ W | 5°04′04.84″ N | 22 August 2019 | Mixed Land Use | 1.43 |
16 | 75°30′55.37″ W | 5°04′04.19″ N | 1 August 2019 | Mixed Land Use | 7.14 |
17 | 75°30′54.04″ W | 5°04′13.44″ N | 28 August 2019 | Mixed Land Use | 4.16 |
18 | 75°31′00.55″ W | 5°04′08.76″ N | 6 August 2019 | Mixed Land Use | 5.92 |
19 | 75°30′20.88″ W | 5°04′07.18″ N | 8 August 2019 | Mixed Land Use | 6.52 |
20 | 75°31′29.75″ W | 5°04′17.44″ N | 1 August 2019 | Mixed Land Use | 7.53 |
21 | 75°31′51.10″ W | 5°03′21.28″ N | 6 August 2019 | Mixed Land Use | 5.03 |
Source | City | Site Features | RD10 (mg/m2) | Season |
---|---|---|---|---|
[35] | Barcelona, Spain | City Center—Urban Zone | 3.0–23.0 | Summer |
Ring roads with heavy traffic | 24.0–80.0 | |||
Urban tunnel | 13.0 | |||
Demolition/construction area | 2.5–471.0 | |||
[8] | Barcelona, Spain | Urban Zone | 3.7–23.1 | Spring/ Summer |
Girona, Spain | Urban Zone | 1.3–7.1 | ||
Demolition/construction area | 48.7 | |||
Zürich, Switzerland | Urban Zone | 0.2–1.3 | ||
[42] | Andalucía, Spain | Urban Zone | 2.0–22.0 | Summer |
[21] | Birmingham, UK | High traffic highway | 3.8–21.8 | Dry season |
High traffic tunnel | 3.0–36.1 | |||
New Delhi, India | High traffic highway | 44.0–106.0 | ||
[17] | Paris, France | Urban Zone | 0.7–2.2 | Spring |
Cobblestone pavement | 10.3 | |||
[7] | Porto, Portugal | Paved road | 0.1–0.9 | Summer |
Cobblestone pavement | 50.0 | |||
[43] | Barcelona, Spain | Urban Zone | 1.1–3.4 | Summer |
Turin, Italy | Urban Zone | 0.8–8.8 | Summer and winter | |
Roads in proximity to unpaved parks | 12.3 | |||
Demolition/construction area | 11.5–42.7 | |||
Current study | Bogotá, Colombia | Urban Zone | 1.8–45.7 | Dry season |
Manizales, Colombia | Urban Zone | 0.8–26.7 |
Rotated Component Matrix a—RD10 Bogotá | Rotated Component Matrix b—RD10 Manizales | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element | PC1 | PC2 | PC3 | PC4 | Element | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
V | 0.97 | Co | 0.98 | ||||||||
Al | 0.96 | V | 0.97 | ||||||||
Fe | 0.96 | Mo | 0.96 | ||||||||
Ti | 0.92 | Cd | 0.96 | ||||||||
As | 0.85 | 0.35 | Fe | 0.91 | |||||||
K | 0.82 | 0.52 | Ca | 0.83 | |||||||
Pb | 0.78 | 0.4 | Pb | 0.79 | 0.49 | ||||||
Co | 0.78 | 0.47 | Mg | 0.75 | 0.54 | ||||||
Mn | 0.77 | 0.57 | Ti | 0.71 | 0.54 | ||||||
Ca | 0.75 | 0.61 | SO4 | 0.90 | |||||||
Cr | 0.71 | 0.38 | 0.52 | As | 0.35 | 0.79 | |||||
Se | 0.34 | 0.90 | K | 0.77 | 0.55 | ||||||
Na | 0.33 | 0.88 | Na | 0.49 | 0.72 | 0.38 | |||||
NO3 | 0.88 | Ni | 0.86 | ||||||||
Mg | 0.54 | 0.77 | Mn | 0.97 | |||||||
Sb | 0.86 | NO3 | 0.90 | ||||||||
Cu | 0.35 | 0.36 | 0.83 | Cu | 0.43 | 0.39 | 0.53 | 0.52 | |||
Mo | 0.45 | 0.80 | Sb | 0.61 | 0.46 | ||||||
Ni | 0.72 | 0.42 | Al | 0.58 | 0.52 | 0.5 | |||||
Cl | 0.92 | Se | 0.56 | 0.37 | 0.4 | −0.38 | |||||
SO4 | 0.49 | 0.63 | 0.55 | Cr | 0.52 | −0.66 | |||||
Cd | Cl | −0.84 | |||||||||
Eigenvalues | 8.9 | 5.4 | 3.5 | 1.5 | Eigenvalues | 8.3 | 4.1 | 2.2 | 2.1 | 1.9 | 1.7 |
Variance (%) | 42.3 | 25.9 | 16.7 | 7.2 | Variance (%) | 37.8 | 18.7 | 10.1 | 9.3 | 8.5 | 7.7 |
Cum. (%) | 42.3 | 68.3 | 85.0 | 92.2 | Cum. (%) | 37.8 | 56.5 | 66.6 | 76 | 84.5 | 92.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanegas, S.; Trejos, E.M.; Aristizábal, B.H.; Pereira, G.M.; Hernández, J.M.; Murillo, J.H.; Ramírez, O.; Amato, F.; Silva, L.F.O.; Rojas, N.Y.; et al. Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. Atmosphere 2021, 12, 1109. https://doi.org/10.3390/atmos12091109
Vanegas S, Trejos EM, Aristizábal BH, Pereira GM, Hernández JM, Murillo JH, Ramírez O, Amato F, Silva LFO, Rojas NY, et al. Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. Atmosphere. 2021; 12(9):1109. https://doi.org/10.3390/atmos12091109
Chicago/Turabian StyleVanegas, Sebastián, Erika M. Trejos, Beatriz H. Aristizábal, Guilherme M. Pereira, Julio M. Hernández, Jorge Herrera Murillo, Omar Ramírez, Fulvio Amato, Luis F. O. Silva, Néstor Y. Rojas, and et al. 2021. "Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities" Atmosphere 12, no. 9: 1109. https://doi.org/10.3390/atmos12091109
APA StyleVanegas, S., Trejos, E. M., Aristizábal, B. H., Pereira, G. M., Hernández, J. M., Murillo, J. H., Ramírez, O., Amato, F., Silva, L. F. O., Rojas, N. Y., Zafra, C., & Pachón, J. E. (2021). Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. Atmosphere, 12(9), 1109. https://doi.org/10.3390/atmos12091109