Environmental Impact of District Heating System Retrofitting
Abstract
:1. Introduction
2. Materials and Methods
- Heat production;
- Heat distribution;
- Heat consumption.
- Compatibility of technology (low temperature district heating vs. high energy demand of non-renovated buildings);
- Rates of the city growth (new customers);
- Changes in the demand profiles, etc.
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Luo, M.; Ji, Y.; Ren, Y.; Gao, F.; Zhang, H.; Zhang, L.; Li, H. Characteristics and health risk assessment of PM2.5-bound pahs during heavy air pollution episodes in winter in urban area of Beijing, China. Atmosphere 2021, 12, 323. [Google Scholar] [CrossRef]
- BP Annual Review 2020, British Petroleum 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 15 August 2021).
- European Commission. EU Climate Action and the European Green Deal. 14 July 2021. Available online: https://ec.europa.eu/clima/policies/eu-climate-action_en (accessed on 15 August 2021).
- The World Bank. The Growing Role of Minerals and Metals for a Low Carbon Future. 2018. Available online: https://www.worldbank.org/en/topic/energy/publication/minerals-and-metals-to-play-significant-role-in-a-low-carbon-future#:~:text=The%20rise%20of%20green%20energy,new%20World%20Bank%20report%2C%20%E2%80%9CThe (accessed on 15 August 2021).
- Kramarz, T.; Park, S.; Johnson, C. Governing the dark side of renewable energy: A typology of global displacements. Energy Res. Soc. Sci. 2021, 74, 101902. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Hook, A.; Martiskainen, M.; Brock, A.; Turnheim, B. The decarbonisation divide: Contextualizing landscapes of low-carbon exploitation and toxicity in Africa Global Environ. Change 2020, 60, 102028. [Google Scholar] [CrossRef]
- Remeikienė, R.; Gasparėnienė, L.; Fedajev, A.; Szarucki, M.; Đekić, M.; Razumienė, J. Evaluation of sustainable energy development progress in EU member states in the context of building renovation. Energies 2021, 14, 4209. [Google Scholar] [CrossRef]
- Dalla Rosa, A.; Christensen, J.E. Low-energy district heating in energy-efficient building areas. Energy 2011, 36, 6890–6899. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Østergaard, P.A.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Thorsen, J.E.; Hvelplund, F.; Mortensen, B.O.G.; Mathiesen, B.V.; et al. The status of 4th generation district heating: Research and results. Energy 2018, 164, 147–159. [Google Scholar] [CrossRef]
- Jouhara, H.; Olabi, A.G. Industrial waste heat recovery. Energy 2018, 160, 1–2. [Google Scholar] [CrossRef]
- Submission of Heat Tariffs Set (Offered) by JSC “RĪGAS SILTUMS” to the Public Utilities Commission. Available online: https://www.rs.lv/lv/saturs/rigas-siltums-siltumenergijas-tarifs (accessed on 15 August 2021).
- David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat roadmap europe: Large-scale electric heat pumps in district heating systems. Energies 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Thornton, R. Copenhagen’s District Heating System: Recycling Waste Heat Reduces Carbon Emissions and Delivers Energy Security; International District Energy Association: Westborough, MA, USA, 2009; 9p, Available online: http://www.districtenergy.org/assets/pdfs/White-Papers/Copenhagen-Clean-District-Heating-final-Web4.pdf (accessed on 15 August 2021).
- Colmenar-Santosa, A.; Rosales-Asensio, E.; Borge-Diez, D.; Blanes-Peiro, J.J. District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalization. Renew. Sustain. Energy Rev. 2016, 62, 621–639. [Google Scholar] [CrossRef]
- Difs, K.; Bennstam, M.; Trygg, L.; Nordenstam, L. Energy conservation measures in buildings heated by district heating—A local energy system perspective. Energy 2010, 35, 3194–3203. [Google Scholar] [CrossRef] [Green Version]
- Kosorukov, D.; Aksenov, A. Use of condensing economizers with developed surfaces to improve the energy efficiency of conventional gas-fired heat generators in boilers. E3S Web Conf. 2021, 263, 04024. [Google Scholar] [CrossRef]
- Dagilis, V.; Vaitkus, L.; Balčius, A.; Gudzinskas, J.; Lukoševičius, V. Low grade heat recovery system for woodfuel cogeneration plant using water vapour regeneration. Therm. Sci. 2018, 22, 2667–2677. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; Shahabi, L. Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm. Appl. Energy 2021, 298, 117257. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Gui, D.; Hua, Y.; Guo, P. Power system planning based on CSP-CHP system to integrate variable renewable energy. Energy 2021, 232, 121064. [Google Scholar] [CrossRef]
- Ravina, M.; Panepinto, D.; Zanetti, M.C.; Genon, G. Environmental analysis of a potential district heating network powered by a large-scale cogeneration plant. Environ. Sci. Pollut. Res. 2017, 24, 13424–13436. [Google Scholar] [CrossRef] [PubMed]
- Ravina, M.; Panepinto, D.; Zanetti, M. District heating networks: An inter-comparison of environmental indicators. Environ. Sci. Pollut. Res. 2021, 28, 33809–33827. [Google Scholar] [CrossRef]
- Le Truong, N.; Gustavsson, L. Cost and primary energy efficiency of small-scale district heating systems. Appl. Energy 2014, 130, 419–427. [Google Scholar] [CrossRef]
- Rusovs, D.; Jakovleva, L.; Zentins, V.; Baltputnis, K. Heat load numerical prediction for district heating system operational control. Latv. J. Phys. Tech. Sci. 2021, 58, 121–136. [Google Scholar] [CrossRef]
- Kudela, L.; Špiláček, M.; Pospíšil, J. Influence of control strategy on seasonal coefficient of performance for a heat pump with low-temperature heat storage in the geographical conditions of central europe. Energy 2021, 234, 121276. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Streimikiene, D.; Balezentis, T. Multi-criteria analysis of heating sector sustainability in selected north european countries. Sustain. Cities Soc. 2021, 69, 102826. [Google Scholar] [CrossRef]
- Lebedeva, K.; Borodinecs, A.; Krumins, A.; Tamane, A.; Dzelzitis, E. Potential of end-user electricity peak load shift in latvia. Latv. J. Phys. Tech. Sci. 2021, 58, 32–44. [Google Scholar] [CrossRef]
- Zajacs, A.; Borodiņecs, A. Assessment of development scenarios of district heating systems. Sustain. Cities Soc. 2019, 48, 101540. [Google Scholar] [CrossRef]
- Latvian Public Broadcasting, State to Grant Public Loans for Apartment Building Renovation. 2021. Available online: https://eng.lsm.lv/article/economy/economy/state-to-grant-public-loans-for-apartment-building-renovation.a411764/ (accessed on 15 August 2021).
- Regulations No. 222 of Cabinet of Ministers of Latvia “Methods for Calculating the Energy Performance of Buildings and Rules for Energy Certification of Buildings”. Available online: https://likumi.lv/ta/id/322436-eku-energoefektivitates-aprekina-metodes-un-eku-energosertifikacijas-noteikumi (accessed on 15 August 2021).
- Toffanin, R.; Curti, V.; Barbato, M.C. Impact of legionella regulation on a 4th generation district heating substation energy use and cost: The case of a swiss single-family household. Energy 2021, 228, 120473. [Google Scholar] [CrossRef]
- Hajian, H.; Ahmed, K.; Kurnitski, J. Estimation of energy-saving potential and indoor thermal comfort by the central control of the heating curve in old apartment buildings. E3S Web Conf. 2021, 246, 09002. [Google Scholar] [CrossRef]
- Republic of Latvia Cabinet Regulation No. 42 (23 January 2018). “Methodology for Calculating Greenhouse Gas Emissions”. Available online: https://likumi.lv/ta/en/en/id/296651 (accessed on 15 August 2021).
- Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0087&from=LV (accessed on 15 August 2021).
- U.S. Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories. 2014. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf (accessed on 15 August 2021).
- Koffi, B.; Cerutti, A.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. CoM Default Emission Factors for the Member States of the European Union—Version 2017, European Commission, Joint Research Centre (JRC) [Dataset] PID. Available online: http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017 (accessed on 15 August 2021).
Scenario | Reference Scenario (Actual State) | Low Refurbishment Rate | Moderate Refurbishment Rate | High Refurbishment Rate and Low Temperature Supply | Low Refurbishment Rate and Low Temperature Supply | |
---|---|---|---|---|---|---|
Changing Parameters | ||||||
Distribution network | Not refurbished | 100% refurbished | 100% refurbished | 100% Refurbished Temperatures in distribution network 60/35 °C | 100% Refurbished Temperatures in distribution network 60/35 °C | |
Production units and fuel | 2 natural gas boilers (2 × 3 MW) | 2 natural gas boilers (2 × 3 MW), natural gas CHP unit (600 kW) | 2 natural gas boilers (2 × 3 MW), natural gas CHP unit (600 kW), wooden biomass water boiler 2 MW | 2 natural gas boilers (2 × 3 MW), natural gas CHP unit (600 kW), local solar collectors | 1 natural gas boiler (3 MW), natural gas CHP unit (600 kW), wooden biomass water boiler 3 MW | |
Building stock refurbishment rate | Not refurbished | 3% per year | 5% per year | 7% per year | 3% per year |
Installed Heat Capacity | 6.97 | MW | Total Emissions | 2990.447 | tCO2 | Production programs | ||||||||
Capacity of installed cogeneration unit | 0.50 | MW el | Emissions for heat | 2112.16 | tCO2 | |||||||||
0.64 | MW th | Emissions for electr | 878.29 | tCO2 | ||||||||||
Peak load for heating period (heat) | 3.85 | MW | ||||||||||||
Peak load for heating period (electr) | 0.50 | MW | ||||||||||||
Cogeneration heating plants | ||||||||||||||
Units | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total | |
Hours year | 744 | 672 | 744 | 720 | 744 | 720 | 744 | 744 | 720 | 744 | 720 | 744 | ||
Working hours of cogeneration unit | h | 744 | 672 | 744 | 720 | 744 | 720 | 744 | 744 | 720 | 744 | 720 | 744 | 8760 |
Working hours of natural gas boilers | h | 744 | 672 | 744 | 720 | 0 | 0 | 0 | 0 | 0 | 744 | 720 | 744 | 5088 |
Heat energy to the network | MWh | 1443 | 1284 | 1237 | 874 | 339 | 307 | 311 | 313 | 307 | 623 | 1017 | 1335 | 9392 |
Average heating load | MW | 1.94 | 1.91 | 1.66 | 1.21 | 0.46 | 0.43 | 0.42 | 0.42 | 0.43 | 0.84 | 1.41 | 1.79 | |
Cogeneration unit el.load | MW | 0.50 | 0.50 | 0.50 | 0.50 | 0.36 | 0.33 | 0.33 | 0.33 | 0.33 | 0.50 | 0.50 | 0.50 | |
alfa (electr/heat) | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | ||
Cogeneration unit produced electr. | MWh | 372 | 336 | 372 | 360 | 266 | 241 | 245 | 246 | 241 | 372 | 360 | 372 | 3783 |
El. self-consumption of cog.unit | MWh | 46 | 46 | 50 | 27 | 15 | 14 | 15 | 13 | 14 | 17 | 47 | 39 | 343 |
Electricity to the grid | MWh | 326 | 290 | 322 | 333 | 251 | 227 | 230 | 233 | 227 | 355 | 313 | 333 | 3440 |
Heat load of cogeneration unit | MW | 0.64 | 0.64 | 0.64 | 0.64 | 0.46 | 0.43 | 0.42 | 0.42 | 0.43 | 0.64 | 0.64 | 0.64 | |
Heat energy produced by cogeneration unit | MWh | 474 | 428 | 474 | 459 | 339 | 307 | 311 | 313 | 307 | 474 | 459 | 474 | 4819 |
Heat energy poduced by heating boiler (ng) | MWh | 969 | 856 | 764 | 416 | 0 | 0 | 0 | 0 | 0 | 149 | 558 | 861 | 4573 |
Natural gas consumption | 1000 m3 | 219 | 196 | 195 | 151 | 76 | 69 | 70 | 70 | 69 | 123 | 168 | 207 | 1611 |
Efficiency water boiler | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | ||
Efficiency cogeneration unit | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | ||
Total efficiency | 0.90 | 0.90 | 0.90 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.88 | 0.89 | 0.90 | 0.89 | |
Heat energy produced with renewables | MWh | 0 |
Reference Scenario (Actual State) | Low Refurbishment Rate | Moderate Refurbishment Rate | High Refurbishment Rate and Low Temperature Supply | Low Refurbishment Rate and Low Temperature Supply | ||
---|---|---|---|---|---|---|
Emissions, tCO2 | 2372 | 2990 | 2102 | 1737 | 1998 | |
Loss in the network (% from consumed energy) | 10.61 | 5.77 | 6.40 | 2.71 | 4.15 | |
Consumption, MWh | 10,230.79 | 8849.63 | 7928.86 | 7161.55 | 8849.63 | |
Produced from renewable sources, MWh | 0.00 | 0.00 | 3036.79 | 2078.62 | 3701.51 | |
Electricity to Heat ratio (MWh/MWh) | 0.00 | 0.40 | 0.43 | 0.45 | 0.43 | |
Overcapacity - installed/demand | 1.39 | 1.61 | 2.31 | 1.99 | 1.53 | |
Fuel balance fossil vs. renewable (%/%) | 100/0 | 100/0 | 64/36 | 72/28 | 56/44 | |
Operational efficiency (%) | Electricity | 0.00 | 86.36 | 83.78 | 53.65 | 82.55 |
Heat | 17.89 | 15.38 | 10.78 | 8.64 | 14.49 | |
Load factor (%) | Heat | 28.02 | 27.85 | 28.04 | 19.34 | 24.98 |
Electricity | 0.00 | 86.36 | 83.78 | 53.65 | 82.55 | |
Efficiency of fuel use (%) | 93.00 | 89.00 | 93.61 | 88.71 | 95.40 | |
Emission factor for electricity (tCO2/MWh) | N/A | 0.23 | 0.23 | 0.23 | 0.23 | |
Emission factor for heat energy (tCO2/MWh) | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 | |
Total emissions tCO2 | 2372 | 2990 | 2102 | 1737 | 1934 | |
Energy-efficiency of the system (losses) (%) | 10.61 | 5.77 | 6.40 | 2.71 | 4.15 | |
Heat density annual (MWh/m2) | 0.13 | 0.11 | 0.10 | 0.06 | 0.10 | |
Transmission efficiency (MWhloss/MWhpr) | 10.61 | 5.77 | 6.40 | 3.82 | 4.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajacs, A.; Borodinecs, A.; Vatin, N. Environmental Impact of District Heating System Retrofitting. Atmosphere 2021, 12, 1110. https://doi.org/10.3390/atmos12091110
Zajacs A, Borodinecs A, Vatin N. Environmental Impact of District Heating System Retrofitting. Atmosphere. 2021; 12(9):1110. https://doi.org/10.3390/atmos12091110
Chicago/Turabian StyleZajacs, Aleksandrs, Anatolijs Borodinecs, and Nikolai Vatin. 2021. "Environmental Impact of District Heating System Retrofitting" Atmosphere 12, no. 9: 1110. https://doi.org/10.3390/atmos12091110
APA StyleZajacs, A., Borodinecs, A., & Vatin, N. (2021). Environmental Impact of District Heating System Retrofitting. Atmosphere, 12(9), 1110. https://doi.org/10.3390/atmos12091110