Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Background
2.2. Sampling and Laboratory Analysis
2.2.1. Sample Collection
2.2.2. PM2.5 Preparation and Total Metal Concentration
2.2.3. Quality Control (QC)
2.3. Pollution Level Assessment
2.3.1. GeoAccumulation Index (Igeo)
2.3.2. Pollution Index (PI)
2.4. Health Risk Assessment
2.4.1. Exposure Assessment
2.4.2. Risk Assessment
3. Results and Discussions
3.1. Heavy Metals in Road Dust
3.2. Pollution Level Assessment
3.2.1. Geoaccumulation Index (Igeo)
3.2.2. Pollution Index (PI)
3.3. Health Risk Assessment
3.3.1. Non-Carcinogenic Risk
3.3.2. Carcinogenic Risk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faisal, M.; Wu, Z.; Wang, H.; Hussain, Z.; Shen, C. Geochemical Mapping, Risk Assessment, and Source Identification of Heavy Metals in Road Dust Using Positive Matrix Factorization (PMF). Atmosphere 2021, 12, 614. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Toward more intercomparable road dust studies. Crit. Rev. Environ. Sci. Technol. 2021, 51, 826–855. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Lin, C.; Yu, R.; Yan, Y.; Hu, G.; Li, H. Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China. RSC Adv. 2019, 9, 14736–14744. [Google Scholar] [CrossRef] [Green Version]
- Kastury, F.; Smith, E.; Juhasz, A. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 2017, 574, 1054–1074. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, W.; Li, F.; Liu, C.; Ma, J.; Yan, J.; Wang, Y.; Tian, R. Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district. Sci. Total Environ. 2021, 780, 146357. [Google Scholar] [CrossRef] [PubMed]
- Gujre, N.; Rangan, L.; Mitra, S. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes. Chemosphere 2021, 271, 129573. [Google Scholar] [CrossRef]
- Shakerkhatibi, M.; Seifipour, H.; Sabeti, Z.; Kahe, D.; Jafarabadi, M.A.; Benis, K.Z.; Hajaghazadeh, M. Correlation of ambient particulate matters (PM10, PM2.5) with respiratory hospital admissions: A case-crossover study in Urmia, Iran. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 2184–2201. [Google Scholar] [CrossRef]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [Google Scholar] [CrossRef]
- Rahman, M.S.; Khan, M.; Jolly, Y.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Evtyugina, M.; Vicente, A.; Vicente, E.; Nunes, T.; Silva, P.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive Road Dust PM2.5 Emissions and Their Potential Health Impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.C.; Watson, J.; Lu, Z.; Lowenthal, D.H.; Frazier, C.A.; Solomon, P.A.; Thuillier, R.H.; Magliano, K. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ. 1996, 30, 2079–2112. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, Y.; Yin, C.; Jiang, Y.; Li, X. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing. Sci. Total Environ. 2016, 550, 167–175. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; DeMinter, J.T.; Weinstein, J.P. Emissions of Metals Associated with Motor Vehicle Roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef]
- Alshetty, V.D.; Kuppili, S.K.; Nagendra, S.S.; Ramadurai, G.; Sethi, V.; Kumar, R.; Sharma, N.; Namdeo, A.; Bell, M.; Goodman, P.; et al. Characteristics of tail pipe (Nitric oxide) and resuspended dust emissions from urban roads—A case study in Delhi city. J. Transp. Health 2020, 17, 100653. [Google Scholar] [CrossRef]
- Lurie, K.; Nayebare, S.R.; Fatmi, Z.; Carpenter, D.O.; Siddique, A.; Malashock, D.; Khan, K.; Zeb, J.; Hussain, M.M.; Khatib, F.; et al. PM2.5 in a megacity of Asia (Karachi): Source apportionment and health effects. Atmos. Environ. 2019, 202, 223–233. [Google Scholar] [CrossRef]
- Liu, E.; Wang, X.; Liu, H.; Liang, M.; Zhu, Y.; Li, Z. Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing), China. Ecotoxicol. Environ. Saf. 2019, 173, 381–392. [Google Scholar] [CrossRef]
- Han, N.M.M.; Latif, M.T.; Othman, M.; Dominick, D.; Mohamad, N.; Juahir, H.; Tahir, N.M. Composition of selected heavy metals in road dust from Kuala Lumpur city centre. Environ. Earth Sci. 2014, 72, 849–859. [Google Scholar] [CrossRef]
- Rehman, A.; Liu, G.; Yousaf, B.; Rehman, M.Z.U.; Ali, M.U.; Rashid, M.S.; Farooq, M.R.; Javed, Z. Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicol. Environ. Saf. 2020, 190, 110059. [Google Scholar] [CrossRef]
- Jayarathne, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Sci. Total Environ. 2018, 635, 1609–1619. [Google Scholar] [CrossRef]
- The State Council on the General Planning of Zhengzhou City. Available online: http://www.gov.cn/zwgk/2010-08/23/content_1686432.htm (accessed on 23 October 2010).
- Zhengzhou Local History Office. Available online: http://szb.zhengzhou.gov.cn/html/2012/zzgl_1219/57.html (accessed on 11 February 2016).
- Zhengzhou Local History Office. Available online: http://szb.zhengzhou.gov.cn/zzgl/1142969.jhtml (accessed on 18 April 2014).
- Zhengzhou Statistical Bulletin on National Economic and Social Development 2019. Available online: http://tjj.zhengzhou.gov.cn/tjgb/3112732.jhtml (accessed on 7 February 2021).
- Zhengzhou Municipal Public Bureau. Available online: http://zzga.zhengzhou.gov.cn/jfgg/3460061.jhtml (accessed on 24 June 2020).
- China Electric Vehicle Association. The Number of Electric Vehicles in Zhengzhou Has Exceeded 3 Million. Available online: http://www.ceva.org.cn/cn/viewnews/20191015/20191015102917.htm (accessed on 15 October 2019).
- Othman, M.; Latif, M.T.; Matsumi, Y. The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicol. Environ. Saf. 2019, 170, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Liang, T.; Li, K. Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environ. Int. 2019, 128, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, X.; Pan, H. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi’an, China. Environ. Sci. Pollut. Res. 2016, 23, 19838–19846. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, O.; de la Campa, A.M.S.; Amato, F.; Moreno, T.; Silva, L.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2019, 652, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Lu, B.; Ji, Y.; Zhao, X.; Bai, Z.; Xu, Y.; Liu, Y.; Jiang, H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J. Environ. Monit. 2012, 14, 791–803. [Google Scholar] [CrossRef]
- Kastury, F.; Smith, E.; Karna, R.R.; Scheckel, K.; Juhasz, A. Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid. Environ. Pollut. 2018, 241, 930–937. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Hangxin, C.; Kuo, L.; Min, L.; Ke, Y.; Fei, L.; Xiaomeng, C. Background and benchmark values of chemical elements in urban soils in China. Geoscience Frontiers. 2014, 21, 265. [Google Scholar] [CrossRef]
- Müller, G. Index of Geo-Accumulation in Sediments of the Rhine River—ScienceOpen. Available online: https://www.scienceopen.com/document?vid=4b875795-5729-4c05-9813-64951e2ca488 (accessed on 1 April 2021).
- Adimalla, N.; Wang, H. Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arab. J. Geosci. 2018, 11, 684. [Google Scholar] [CrossRef]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.; Siddique, N. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pellón, A.; Nischkauer, W.; Limbeck, A.; Fernandez-Olmo, I. Metal(loid) bioaccessibility and inhalation risk assessment: A comparison between an urban and an industrial area. Environ. Res. 2018, 165, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Al-Khashman, O.A. Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ. Geochem. Health 2007, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, D.; Liu, X.; Chen, F.; Yu, Y.; Yang, L.; Chen, J.; Zhou, A. Spatial and temporal variation in magnetic properties of street dust in Lanzhou City, China. Sci. Bull. 2008, 53, 1913–1923. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, L.; Li, L.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Huang, M.; Wang, W.; Chan, C.Y.; Cheung, K.C.; Man, Y.B.; Wang, X.; Wong, M.H. Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci. Total Environ. 2014, 479–480, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Giyasov, B.; Giyasova, I. The Impact of High-Rise Buildings on the Living Environment. E3S Web Conf. 2018, 33, 01045. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-H.; Chen, L.-J.; Yu, L.; Guo, Z.-B.; Shan, C.-Q.; Lin, J.-Q.; Gu, Y.-G.; Yang, Z.-B.; Yang, Y.-X.; Shao, J.-R.; et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Wang, J.; Xuan, B.; Cai, X.; Zhang, Y. Spatial Distribution and Health Risk Assessment of Heavy Metals in Urban Road Dust of Guiyang, China. Nat. Environ. Pollut. Technol. 2018, 17, 407–412. [Google Scholar]
- Wang, J.; Chen, Z.; Sun, X.; Shi, G.; Xu, S.; Wang, D.; Wang, L. Quantitative spatial characteristics and environmental risk of toxic heavy metals in urban dusts of Shanghai, China. Environ. Earth Sci. 2009, 59, 645–654. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Keshavarzi, B.; Beverley, A.H. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol. Environ. Saf. 2017, 136, 92–103. [Google Scholar] [CrossRef]
- Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Pollitt, K.G.; Harrison, R.M. The PM 10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ. 2015, 530–531, 445–452. [Google Scholar] [CrossRef]
- Hwang, H.-M.; Fiala, M.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-Y.; Yu, S.-D.; Hong, Y.-S. Environmental Source of Arsenic Exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackah, M. Soil elemental concentrations, geoaccumulation index, non-carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana. Chemosphere 2019, 235, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Mohmand, J.; Eqani, S.A.M.A.S.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Shil, S.; Singh, U.K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 2019, 106, 105455. [Google Scholar] [CrossRef]
Index | Value | Category |
---|---|---|
Geo-accumulation Index (Igeo) | Igeo < 0 | Unpolluted |
Igeo 0–1 | Unpolluted–moderately | |
Igeo 1–2 | Moderately | |
Igeo 2–3 | Moderately–strongly | |
Igeo 3–4 | Strongly | |
Igeo 4–5 | Strongly–extremely | |
Igeo > 5 | Extremely | |
Pollution Index (PI) | PI ≤ 1 | Low |
1 < PI ≤ 3 | Medium | |
PI > 3 | High |
Statistical Values | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
Background values [38] | 64 | 21 | 14 | 42 | 8 | 0.08 | 18 | 0.02 |
Min | 19.93 | 6.77 | 7.99 | 35.53 | 8.03 | 0.12 | 19.30 | 0.03 |
Max | 94.78 | 28.23 | 63.26 | 1319.28 | 17.49 | 3.48 | 160.62 | 1.54 |
Mean | 46.26 | 12.51 | 25.13 | 152.35 | 11.53 | 0.56 | 52.15 | 0.32 |
Median | 40.96 | 12.38 | 22.08 | 113.45 | 11.11 | 0.45 | 43.16 | 0.14 |
City | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
Zhengzhou, China (Background values) [38] | 64 | 21 | 14 | 42 | 8 | 0.08 | 18 | 0.02 |
Zhengzhou, China (Mean) | 46.26 | 12.51 | 25.13 | 152.35 | 11.53 | 0.56 | 52.15 | 0.32 |
Beijing, China [3] | 92.1 | 32.47 | 83.12 | 280.65 | 4.88 | 0.59 | 60.88 | 0.16 |
Beijing Park, China [51] | 69.33 | 25.97 | 72.13 | 219.2 | - | 0.64 | 201.82 | - |
Baoji, China [47] | 126.7 | 48.8 | 123.2 | 715.3 | 19.8 | NA | 433.2 | 1.1 |
Chengdu, China [50] | 84.3 | 24.4 | 100 | 296 | - | 1.66 | 82.3 | - |
Guangzhou, China [48] | 176.22 | 41.38 | 192.36 | 1777.18 | 20.05 | 2.14 | 387.53 | 0.22 |
Guiyang, China [52] | 129.04 | 60.43 | 129.33 | 176.05 | - | 0.61 | 63.12 | - |
Nanjing, China [21] | 126 | 55.9 | 123 | 394 | 13.4 | 1.1 | 103 | 0.12 |
Shanghai, China [53] | 157 | NA | NA | NA | 8.73 | 1.24 | 246 | 0.16 |
Metals | Possible Emission Source |
---|---|
Cr | Fuel and incineration of lubricants [2] |
Ni | Tire abrasion and fuel combustion [54] |
Cu | Brake wear, coal combustion, and brake pad [55] |
Zn | Brake wear, lubricants, and tire abrasion [56] |
Cd | Engine wear, lubricating oil, and brake wear [57] |
As | Drinkable water, foods, and tobacco [58] |
Pb | Fuel, motor oil combustion, brake wear [18] |
Hg | Anthropogenic and natural sources [1] |
Geoaccumulation Index | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
Minimum | −2.26 | −2.21 | −1.39 | −0.82 | −0.57 | −0.02 | −0.48 | −0.02 |
Maximum | −0.01 | −0.15 | 1.59 | 4.38 | 0.54 | 4.85 | 2.57 | 10.02 |
Mean | −1.14 | −1.38 | 0.07 | 0.91 | −0.08 | 1.91 | 0.79 | 2.71 |
Pollution Index | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
Minimum | 0.31 | 0.32 | 0.65 | 0.86 | 1.12 | 2.19 | 1.24 | 1.54 |
Maximum | 1.33 | 1.08 | 3.97 | 16.86 | 1.81 | 25.77 | 5.74 | 48.12 |
Mean | 0.72 | 0.59 | 1.79 | 3.62 | 1.43 | 7.15 | 2.89 | 14.25 |
Parameter | Factor | Values | Units |
---|---|---|---|
Average Time | AT | 365 × ED | Days |
Bodyweight | BW (Child) | 15 | Kg |
Bodyweight | BW (Adult) | 70 | Kg |
Exposure duration | ED (Child) | 6 | Years |
Exposure duration | ED (Adult) | 24 | Years |
Exposure frequency | EF | 180 | Days/year |
Dust inhalation rate | RInh (Child) | 10 | m3/day |
Dust inhalation rate | RInh (Adult) | 20 | m3/day |
Particular emission rate | PEF | 1.36 × 109 | m3/kg |
HI | |||||||||
---|---|---|---|---|---|---|---|---|---|
Land Use Areas | Non-Carcinogenic | Cr | Ni | Cu | Zn | As | Cd | Pb | Hg |
Educational | Adult | 9.12 × 10−3 | 1.83 × 10−4 | 4.07 × 10−4 | 3.66 × 104 | 1.06 × 10−2 | 9.90 × 10−4 | 9.79 × 10−3 | 1.03 × 10−2 |
Children | 1.71 × 10−2 | 4.15 × 10−4 | 3.82 × 10−3 | 3.41 × 10−3 | 2.42 × 10−2 | 1.75 × 10−3 | 9.07 × 10−2 | 1.04 × 10−2 | |
Residential | Adult | 1.18 × 10−2 | 1.86 × 10−4 | 5.66 × 10−4 | 3.92 × 10−4 | 1.04 × 10−2 | 5.80 × 10−4 | 1.05 × 10−2 | 1.56 × 10−2 |
Children | 2.13 × 10−2 | 4.15 × 10−4 | 5.29 × 10−3 | 3.65 × 10−3 | 2.32 × 10−2 | 1.02 × 10−3 | 9.64 × 10−2 | 1.54 × 10−2 | |
Parks | Adult | 8.41 × 10−3 | 1.64 × 10−4 | 2.88 × 10−4 | 2.25 × 10−4 | 1.06 × 10−2 | 5.41 × 10−4 | 7.11 × 10−3 | 7.96 × 10−3 |
Children | 1.54 × 10−2 | 3.67 × 10−4 | 2.67 × 10−3 | 2.08 × 10−3 | 2.43 × 10−2 | 9.58 × 10−4 | 6.59 × 10−2 | 7.87 × 10−3 | |
Commercial | Adult | 1.56 × 10−1 | 1.87 × 10−4 | 7.44 × 10−4 | 3.46 × 10−4 | 9.22 × 10−3 | 8.43 × 10−4 | 1.36 × 10−2 | 1.61 × 10−2 |
Children | 2.85 × 10−2 | 4.16 × 10−4 | 6.93 × 10−3 | 3.25 × 10−3 | 2.08 × 10−2 | 1.51 × 10−3 | 1.25 × 10−1 | 1.59 × 10−3 | |
Industrial | Adult | 1.65 × 10−2 | 2.81 × 10−4 | 3.32 × 10−4 | 3.17 × 10−4 | 9.72 × 10−3 | 5.16 × 10−4 | 1.17 × 10−2 | 9.77 × 10−3 |
Children | 3.07 × 10−2 | 6.32 × 10−4 | 3.06 × 10−3 | 2.92 × 10−3 | 2.21 × 10−2 | 9.11 × 10−4 | 1.06 × 10−1 | 9.64 × 10−3 |
CR | |||||
---|---|---|---|---|---|
Land Use Areas | Carcinogenic | Cr | Ni | As | Cd |
Educational | Adult | 8.93 × 10−8 | 6.31 × 10−10 | 1.02 × 10−9 | 2.90 × 10−10 |
Residential | Adult | 1.12 × 10−7 | 6.25 × 10−10 | 9.77 × 10−10 | 1.71 × 10−10 |
Parks | Adult | 8.21 × 10−8 | 5.55 × 10−10 | 1.04 × 10−9 | 1.60 × 10−10 |
Commercial | Adult | 1.53 × 10−7 | 6.33 × 10−10 | 8.86 × 10−10 | 2.46 × 10−10 |
Industrial | Adult | 1.60 × 10−7 | 9.61 × 10−10 | 9.31 × 10−10 | 1.50 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.; Wu, Z.; Wang, H.; Hussain, Z.; Azam, M.I. Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. Atmosphere 2021, 12, 1213. https://doi.org/10.3390/atmos12091213
Faisal M, Wu Z, Wang H, Hussain Z, Azam MI. Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. Atmosphere. 2021; 12(9):1213. https://doi.org/10.3390/atmos12091213
Chicago/Turabian StyleFaisal, Muhammad, Zening Wu, Huiliang Wang, Zafar Hussain, and Muhammad Imran Azam. 2021. "Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China" Atmosphere 12, no. 9: 1213. https://doi.org/10.3390/atmos12091213
APA StyleFaisal, M., Wu, Z., Wang, H., Hussain, Z., & Azam, M. I. (2021). Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. Atmosphere, 12(9), 1213. https://doi.org/10.3390/atmos12091213