Relationship between Air Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of Ice Conditions, and Probability of Ice Occurrence on Coastal Lagoons
3.2. Analysis of Relationships between Coastal Lagoon Ice Parameters and Winter Temperature Conditions
3.3. Analysis of Trends in Coastal Lagoon Ice Parameters
4. Discussion
5. Conclusions
- -
- On coastal lagoons, winters are more severe and ice phenomena are more intense toward the east. In the eastern part of the southern Baltic coast, ice occurs earlier and disappears later, the ice season is longer, the number of days with ice is higher, and the maximum ice thickness is larger.
- -
- Additionally, ice cover stability (N/S ratio), p, correlation, and determination coefficients for relationships between ice parameters and AT all increase in an eastward direction. However, coefficients of ice parameter variability, except for F, decrease toward the east.
- -
- Physiographic conditions distinguishing the studied basins from the open sea significantly influence the relations between coastal lagoon ice parameters and AT. The relationships are considerably more significant for the coastal lagoons, in comparison to the marine waters of the southern Baltic.
- -
- The relationships between ice parameters and AT are weakened by inflows of warmer and more saline marine waters into the lagoons in autumn and winter. Other factors, like strong wind causing water and ice movement, or human activity (discharge of heated and saline waters, shipping traffic, icebreaking services, especially on Szczecin Lagoon), are also significant in this respect.
- -
- The strength of trends in ice parameters increases in an eastward direction, which indicates a stronger climate warming toward the east. This pattern is displayed the most clearly by H and N.
- -
- Winter AT is clearly increasing along the southern Baltic coast. At the same time, first ice phenomena occur later on the coastal lagoons, and last ice phenomena disappear earlier, S is distinctly shortening, and both N and H are diminishing.
- -
- The correlations between ice parameters and AT, and trends in ice parameters and AT, characterized by high correlation coefficients and high statistical significance, may be utilized for forecasting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyrcz, C. Analysis of ice conditions in the Baltic Sea and in the Puck Bay. Sci. J. Pol. Nav. Acad. 2017, 3, 13–31. [Google Scholar] [CrossRef]
- Nôges, P.; Nôges, T.; Jolma, A.; Kaitaranta, J. Impact of climate change on Physical characteristics of lakes in Europe. In JRC Scientific and Technical Reports; Office for Official Publications of the European Communities: Luxemburg, 2009. [Google Scholar]
- Salonen, K.; Leppäranta, M.; Viljanen, M.; Gulati, R.D. Perspectives in winter limnology: Closing the annual cycle of freezing lakes. Aquat. Ecol. 2009, 43, 609–616. [Google Scholar] [CrossRef]
- Chubarenko, B.; Chechko, V.; Kileso, A.; Krek, E.; Topchaya, V. Hydrological and sedimentation conditions in a non-tidal lagoon during ice coverage—The example of Vistula Lagoon in the Baltic Sea. Estuar. Coast. Shelf Sci. 2019, 216, 38–53. [Google Scholar] [CrossRef]
- Maliński, J. Forecast of Icing in the Area of Polish Coastal Waters; Biuletyn Państwowego Instytutu Hydrologiczno-Meteorologicznego: Warszawa, Poland, 1964. (In Polish) [Google Scholar]
- Zakrzewski, W. The Forecast of the Fast Cover Break Up Decay in the Puck Bay; Wiadomości Instytutu Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 1978. (In Polish) [Google Scholar]
- Zakrzewski, W. The origin of the formation of ice pressure ridges in Puck Bay. Stud. Mater. Oceanol. 1979, 27, 225–252. [Google Scholar]
- Girjatowicz, J.P. Forms of Onshore Ice Thrusting in Coastal Lagoons of the Southern Baltic Sea. J. Cold Reg. Eng. 2015, 29, 04014008. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. Characterization of Grounded Ice Hummocks Found in Coastal Lagoons of the Southern Baltic Sea. J. Coast. Res. 2019, 35, 1250–1259. [Google Scholar] [CrossRef]
- Rukšėnienė, V.; Dailidienė, I.; Myrberg, K.; Ducinskas, K. A simple approach for statistical modelling of ice phenomena in the Curonian Lagoon, the south-eastern Baltic Sea. Baltica 2015, 28, 11–18. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Šarauskienė, D.; Kriaučiūnienė, J. Influence of climate change on the ice conditions of the Curonian Lagoon. Oceanologia 2020, 62, 164–172. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. The relationships of ice parameters with thermal conditions of winter at the coast of the southern Baltic. Czas. Geogr. 1999, 70, 187–200. [Google Scholar]
- Girjatowicz, J.P. Catalogue of Ice Conditions and Thermic Conditions on the Polish Coast; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2007. (In Polish) [Google Scholar]
- Janérus, K.; Jansson, J.E. (Eds.) Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern (1963–1979); Sjöfortsverket: Norrköping, Sweden, 1982. [Google Scholar]
- Leppäranta, M.; Palosuo, E.; Grönvall, H.; Kalliosaari, S.; Seinä, A.; Peltola, J. Phases of the ice season in the Baltic Sea. Finn. Mar. Res. 1988, 254, 1–83. [Google Scholar]
- Schmelzer, N.; Holfort, J. Climatological Ice Atlas for the Western and Southern Baltic Sea (1961–2010); Bundesamt fűr Seeschiffahrt und Hydrographie: Hamburg and Rostock, Germany, 2012. [Google Scholar]
- Time Series Analysis Section III; Department of Statistics, University of Oxford: Oxford, UK, 2010.
- Jevrejeva, S.; Drabkin, V.; Kostjukov, J.; Lebedev, A.; Leppäranta, M.; Mironov, Y.; Schmelzer, N.; Sztobryn, M. Baltic Sea ice seasons in the twentieth century. Clim. Res. 2004, 25, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Leppäranta, M. Interpretation of statistics of lake ice time series for climate variability. Hydrol. Res. 2014, 45, 673–683. [Google Scholar] [CrossRef]
- Karetnikov, S.; Leppäranta, M.; Montonen, A. A time series of over 100 years of ice seasons on Lake Ladoga. J. Great Lakes Res. 2017, 43, 979–988. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. Ice Conditions on the Southern Baltic Sea Coast. J. Cold Reg. Eng. 2011, 25, 1–15. [Google Scholar] [CrossRef]
- Azarienko, N.N.; Majewski, A. (Eds.) Hydrometeorological Regime of Vistula Lagoon; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1975. (In Polish) [Google Scholar]
- Majewski, A. (Ed.) Szczecin Lagoon; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1980. (In Polish) [Google Scholar]
- Choiński, A.; Ptak, M.; Skowron, R. Trends to changes in ice phenomena in Polish lakes in the years 1951–2010. Przegląd Geogr. 2014, 86, 23–40. [Google Scholar] [CrossRef]
- Girjatowicz, J.P.; Świątek, M. Relationships between the Baltic Sea ice extent and ice parameters in the sheltered basins of the southern Baltic coast. Oceanol. Hydrobiol. Stud. 2020, 49, 291–303. [Google Scholar] [CrossRef]
- Nowacki, J. Morphometry of Puck Bay. In Puck Bay; Korzeniewski, K., Ed.; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 1993; pp. 71–78. (In Polish) [Google Scholar]
- Zorina, V.A. Forecast methods of ice phenomena in spring-time in the Curonian and Vistula Lagoons. Tr. GOIN 1965, 86, 36–43. [Google Scholar]
- Sergejeva, L.G. Methodics forecast of ice phase spring in the Kuronsk and Kaliningrad Lagoons. In Calculation and Forecast Regime Sea Elements; Abuzjarov, Z.K., Ed.; Gidrometeoizdat: Leningrad, Russia, 1983. (In Russian) [Google Scholar]
- Girjatowicz, J.P. Ice Thrusting and Hummocking on the Shores of the Southern Baltic Sea’s Coastal Lagoons. J. Coast. Res. 2014, 30, 456. [Google Scholar]
- Kolerski, T.; Zima, P.; Szydłowski, M. Mathematical Modeling of Ice Thrusting on the Shore of the Vistula Lagoon (Baltic Sea) and the Proposed Artificial Island. Water 2019, 11, 2297. [Google Scholar] [CrossRef] [Green Version]
- Lorenc, H. Atlas Climatological of Poland; Wydawnictwo Instytutu Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Ustrnul, Z.; Czerkierda, D. Atlas of Extreme Meteorological Phenomena and Synoptic Situations in Poland; Wydawnictwo Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 2009. (In Polish) [Google Scholar]
- Girjatowicz, J.P. Ice Cover Atlas for Polish Baltic Coastal Waters; Wydawnictwo Akademii Rolniczej w Szczecinie: Szczecin, Poland, 1990. (In Polish) [Google Scholar]
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Ptak, M.; Baczyńska, A. Effect of the North Atlantic Oscillation on Ice Phenomena on Selected Lakes in Poland Over the Years 1961–2010. Quaest. Geogr. 2013, 32, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Janssen, F.; Schrum, C.; Backhaus, J.O. A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Ocean Dyn. 1999, 51, 5–245. [Google Scholar] [CrossRef]
- Girjatowicz, J.P. Catalogue of Salinity and Water Levels at the Polish Coast; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2008. (In Polish) [Google Scholar]
- Rothrock, D.A.Y.Y.; Maykut, G.A. Thinning of the Arctic sea ice cover. Geophisical Res. Lett. 1999, 26, 3469–3472. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E.; Fettever, J.; Scott, J.; Chapman, L. A database for depicting Arctic Sea variation back to 1850. Geogr. Rev. 2017, 107, 89–107. [Google Scholar] [CrossRef]
- Betin, V.V. Severe Winters in Europe and Ice Cover of the Baltic; Gidrometeoizdat: Leningrad, Russia, 1962. (In Russian) [Google Scholar]
- Mälkki, P.; Tamsalu, R. Physical features of the Baltic Sea. Finn. Mar. Res. 1985, 252, 85–96. [Google Scholar]
- Global Climate Change; WMO; ICSU: Geneva, Switzerland, 1990.
- Global Change: Our World in Transition; The Federal Minister for Research and Technology: Bonn, Germany, 1991.
- Seina, A.; Palosuo, E. The classification of the maximum annual extent of ice cover in the Baltic Sea. Meri 1993, 27, 5–20. [Google Scholar]
- Leppäranta, M.; Myrberg, K. Physical Oceanography of the Baltic Sea; Springer and Praxis Publishing: Berlin, Germany, 2009. [Google Scholar]
- Sztobryn, M. Long-term changes in ice conditions at the Polish coast of the Baltic Sea. In Proceedings of the IAHR 1944 12th International Symposium on Ice, Trondheim, Norway, 23–26 August 1994. [Google Scholar]
- Haapala, J.J.; Ronkainen, I.; Schmelzer, N.; Sztobryn, M. Recent change—Sea ice. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC Author Team; Springer: Geesthacht, Germany, 2015; pp. 145–154. [Google Scholar]
- Jaagus, J. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/50–2003/04 and their relationships to large-scale atmospheric circulation. Boreal Environ. Res. 2006, 11, 169–183. [Google Scholar]
- Vihma, T.; Haapala, J. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 2009, 80, 129–148. [Google Scholar] [CrossRef]
- Omstedt, A.; Elken, J.; Lehmann, A.; Leppäranta, M.; Meier, H.E.M.; Myrberg, K.; Rutgersson, A. Progress in phisical oceanography of the Baltic Sea during the 2003–2014 period. Prog. Oceanogr. 2014, 128, 139–171. [Google Scholar] [CrossRef]
- Jevrejeva, S. Severity of winter seasons in the northern Baltic Sea between 1529 and 1990: Reconstruction and analysis. Clim. Res. 2001, 17, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Omstedt, A.; Chen, D. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J. Geophys. Res. Space Phys. 2001, 106, 4493–4500. [Google Scholar] [CrossRef]
- Shirasawa, K.; Ishikawa, M.; Takatsuka, T. Sea Ice Conditions, and Meteorological and Oceanographic Observations at Saroma-ko Lagoon, Hokkaido, November 2003–September 2004. Low Temp. Sci. Ser. A 2005, 63, 34–49. [Google Scholar]
Lagoon | Surface Area (km2) | Volume (km3) | Average Depth (m) | Maximum Depth (m) | Shoreline Length (km) | Lake Exposure (km2m−1) |
---|---|---|---|---|---|---|
Szczecin | 686.9 | 2.582 | 3.8 | 8.6 | 243 | 181 |
Puck | 102.7 | 0.320 | 3.1 | 9.7 | 52 | 33 |
Vistula | 838.0 | 2.300 | 2.6 | 5.1 | 270 | 322 |
Ice Parameters | Values | Lagoons | ||
---|---|---|---|---|
Szczecin | Puck | Vistula | ||
F (date) | earliest | 13 November | 11 November | 11 November |
mean | 25 December | 25 December | 11 December | |
latest | 27 February | 22 February | 6 February | |
v | 0.40 | 0.42 | 0.48 | |
L (date) | earliest | 13 January | 8 December | 16 December |
mean | 5 March | 7 March | 15 March | |
latest | 10 April | 12 April | 19 April | |
v | 0.18 | 0.22 | 0.18 | |
S (days) | shortest | 0 | 0 | 0 |
mean | 64 | 69 | 94 | |
longest | 135 | 139 | 151 | |
v | 0.62 | 0.62 | 0.36 | |
N (days) | minimum | 0 | 0 | 0 |
mean | 51 | 56 | 80 | |
maximum | 123 | 128 | 138 | |
v | 0.69 | 0.68 | 0.45 | |
H (cm) | lowest | 0 | 0 | 0 |
mean | 17 | 20 | 28 | |
highest | 50 | 70 | 70 | |
v | 0.72 | 0.71 | 0.55 |
Lagoons | Winters without Ice | p | SD |
---|---|---|---|
Szczecin | 7 | 0.900 | 0.036 |
Puck | 4 | 0.943 | 0.028 |
Vistula | 1 | 0.986 | 0.014 |
F | L | S | N | H | |
---|---|---|---|---|---|
Szczecin Lagoon | |||||
F | −0.41 *** | −0.86 *** | −0.68 *** | −0.53 *** | |
L | −0.41 *** | 0.82 *** | 0.82 *** | 0.71 *** | |
S | −0.87 *** | 0.82 *** | 0.89 *** | 0.73 *** | |
N | −0.68 *** | 0.82 *** | 0.89 *** | 0.85 *** | |
H | −0.53 *** | 0.71 *** | 0.73 *** | 0.85 *** | |
Puck Lagoon | |||||
F | −0.31 * | −0.79 *** | −0.61 *** | −0.50 *** | |
L | −0.31 * | 0.83 *** | 0.84 *** | 0.71 *** | |
S | −0.79 *** | 0.83 *** | 0.90 *** | 0.75 *** | |
N | −0.61 *** | 0.84 *** | 0.90 *** | 0.84 *** | |
H | −0.50 *** | 0.71 *** | 0.75 *** | 0.84 *** | |
Vistula Lagoon | |||||
F | −0.14 | −0.70 *** | −0.49 *** | −0.37 ** | |
L | −0.14 | 0.81 *** | 0.83 *** | 0.68 *** | |
S | −0.70 *** | 0.81 *** | 0.89 *** | 0.71 *** | |
N | −0.49 *** | 0.83 *** | 0.89 *** | 0.82 *** | |
H | −0.37 ** | 0.68 *** | 0.71 *** | 0.82 *** |
Ice Parameters and Periods | Lagoons | Mean | ||
---|---|---|---|---|
Szczecin | Puck | Vistula | ||
F, Dec-Mar | 0.45 *** | 0.44 *** | 0.30 * | 0.40 |
L, Dec-Mar | −0.83 *** | −0.83 *** | −0.83 *** | −0.83 |
S, Dec-Mar | −0.84 *** | −0.84 *** | −0.81 *** | −0.83 |
N, Dec-Mar | −0.92 *** | −0.93 *** | −0.90 *** | −0.92 |
H, Dec-Mar | −0.85 *** | −0.86 *** | −0.87 *** | −0.86 |
F, Nov-Dec | 0.65 *** | 0.70 *** | 0.64 *** | 0.66 |
F, Dec-Jan | 0.46 *** | 0.51 *** | 0.35 ** | 0.44 |
L, Feb-Mar | −0.87 *** | −0.87 *** | −0.88 *** | −0.87 |
L, Mar-Apr | −0.69 *** | −0.76 *** | −0.77 *** | −0.74 |
Ice Parameters | Lagoons | Mean | ||
---|---|---|---|---|
Szczecin | Puck | Vistula | ||
F | 0.38 ** | 0.41 *** | 0.30 * | 0.36 |
L | −0.33 ** | −0.36 ** | −0.42 *** | −0.37 |
S | −0.46 *** | −0.51 *** | −0.53 *** | −0.50 |
N | −0.42 *** | −0.47 *** | −0.52 *** | −0.47 |
H | −0.23 | −0.31 * | −0.42 *** | −0.32 |
Averages of obsolute values | 0.36 | 0.41 | 0.44 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girjatowicz, J.P.; Świątek, M. Relationship between Air Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions. Atmosphere 2021, 12, 931. https://doi.org/10.3390/atmos12080931
Girjatowicz JP, Świątek M. Relationship between Air Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions. Atmosphere. 2021; 12(8):931. https://doi.org/10.3390/atmos12080931
Chicago/Turabian StyleGirjatowicz, Józef Piotr, and Małgorzata Świątek. 2021. "Relationship between Air Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions" Atmosphere 12, no. 8: 931. https://doi.org/10.3390/atmos12080931
APA StyleGirjatowicz, J. P., & Świątek, M. (2021). Relationship between Air Temperature Change and Southern Baltic Coastal Lagoons Ice Conditions. Atmosphere, 12(8), 931. https://doi.org/10.3390/atmos12080931