Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Available Data on Radon Temporal Variation
- Radon series with duration of more than two months, obtained in flats of multistorey buildings under normal operation (applying radon monitors);
- Results of a survey in a sample of flats in multistorey buildings in Chelyabinsk carried out in two seasons (applying solid-state nuclear track detectors);
- Results of a survey of flats in a multistorey building in Ekaterinburg, carried out in two seasons (applying solid-state nuclear track detectors).
2.2. Climate
2.3. Seasonal Variation Model
- The main mechanism of the radon entry into flats in multistorey buildings is diffusion from building materials. The main characteristic of the building material, which determines the rate of diffusion of radon entry, is the Ra–226 concentration. The variability of this characteristic within a large country like Russia can be quite significant. At the same time, the variability of other characteristics of the building materials that determine the diffusion is less significant.
- The main mechanism limiting the accumulation of radon is the ventilation of the building. There are two main modes of ventilation in a building: controlled and uncontrolled. In uncontrolled mode, all ventilation devices are closed and inactivated, while the air exchange rate (AER) depends on the permeability of the building envelope and the temperature difference. The controlled mode involves opening windows or turning on mechanical ventilation systems in order to achieve the AER desired by residents. The physical model describing ventilation takes into account the leakage area, temperature differences, and the frequency and duration of controlled ventilation [54,55].
- In continental climate during cold winter, below certain negative temperatures, controlled ventilation stops. As the outdoor temperature rises, the frequency and ventilation duration gradually increases. At summer temperatures, the ventilation frequency is maximum. At the same time, the temperature difference in the summer period is close to zero, so the AER is mainly determined by the wind pressure.
- In large multistorey buildings, there may be radon flow between the rooms of the building, caused by pressure differences. As a result, advective transport of radon from the non-living spaces with low air exchange to living rooms can be observed.
- From the point of view of radon concentration modeling, modern buildings of a high-energy-efficiency class have a lower AER in an uncontrolled mode.
2.4. Temperature Normalization
3. Results
3.1. Estimating the Parameters of The Descriptive Model
- Subgroup A1—8 flats (40%),
- Subgroup A2—6 flats (30%),
- Subgroup A3—4 flats (20%).
3.2. Verification of the Model
3.3. Example of Applying Seasonal Normalization in Nizhny Novgorod
4. Discussion
5. Conclusions
- Indoor radon seasonal variation can be described taking into account the natural, technogenic, and anthropogenic factors affecting the radon levels.
- The model indoor radon seasonal variation developed for the situation of radon entry from building materials in multistorey buildings associates the seasonal radon concentration to frequency and duration of controlled ventilation. For continental climate, the radon temperature dependence can be typically modeled using three temperatures which determine periods of different ventilation pattern as follow: summer ventilation pattern at outdoor temperature above 15 °C, demi-season ventilation at outdoor temperature between 15 and −1 °C, total insulation with temperature below −5 °C.
- Estimation of the annual average indoor radon concentration using the results of the integrated radon measurements during period shorter than twelve months using the developed model is performed by comparing the frequency distributions of atmospheric temperature during the period and a whole year.
- Developed model of indoor radon seasonal variations allows the temperature normalization to estimate average annual radon concentration obtained in the radon surveys in Russian cities in continental climate zones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Committee on Health Risks of Exposure to Radon (BEIR VI). Health Effects of Exposure To Radon; Academy Press: Washington, DC, USA, 1999. [Google Scholar]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. BMJ 2004, 330, 223. [Google Scholar] [CrossRef] [Green Version]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.I.; et al. Residential Radon and Risk of Lung Cancer. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Malinovsky, G.P. Combined Analysis of Onco-Epidemiological Studies of the Relationship between Lung Cancer and Indoor Radon Exposure. Nukleonika 2020, 65, 83–88. [Google Scholar] [CrossRef]
- Hunter, N.; Muirhead, C.R.; Bochicchio, F.; Haylock, R.G.E. Calculation of Lifetime Lung Cancer Risks Associated with Radon Exposure, Based on Various Models and Exposure Scenarios. J. Radiol. Prot. 2015, 35, 539–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2019 Risk Factors Collaborators. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- ICRP. Lung Cancer Risk from Radon and Progeny and Statement on Radon; ICRP Publication: London, UK, 2010. [Google Scholar]
- ICRP. Radiological Protection against Radon Exposure; ICRP Publication: London, UK, 2014. [Google Scholar]
- WHO. Handbook on Indoor Radon: A Public Health Perspective; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- IAEA. SSG-32. Specific Safety Guide. In Protection of the Public against Exposure Indoors due to Radon and Other Natural Sources of Radiation; IAEA: Vienna, Austria, 2015; p. 112. Available online: https://www.iaea.org/publications/10671/protection-of-the-public-against-exposure-indoors-due-to-radon-and-other-natural-sources-of-radiation (accessed on 10 June 2021).
- Pinel, J.; Fearn, T.; Darby, S.C.; Miles, J.C.H. Seasonal correction factors for indoor radon measurements in the United-Kingdom. Radiat. Prot. Dosim. 1995, 58, 127–132. [Google Scholar]
- Arvela, H. Review of Seasonal Variation in Residential Indoor Radon Concentrations. In Radioactivity in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 612–617. [Google Scholar] [CrossRef]
- Baysson, H.; Billon, S.; Laurier, D.; Rogel, A.; Tirmarche, M. Seasonal Correction Factors for Estimating Radon Exposure in Dwellings in France. Radiat. Prot. Dosim. 2003, 104, 245–252. [Google Scholar] [CrossRef]
- Krewski, D.; Mallick, R.; Zielinski, J.M.; Létourneau, E.G. Modeling Seasonal Variation in Indoor Radon Concentrations. J Expo. Sci. Environ. Epidemiol. 2004, 15, 234–243. [Google Scholar] [CrossRef]
- Bossew, P.; Lettner, H. Investigations on Indoor Radon in Austria, Part 1: Seasonality of Indoor Radon Concentration. J. Environ. Radioact. 2007, 98, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Denman, A.R.; Crockett, R.G.M.; Groves-Kirkby, C.J.; Phillips, P.S.; Gillmore, G.K.; Woolridge, A.C. The Value of Seasonal Correction Factors in Assessing the Health Risk from Domestic Radon—A Case Study in Northamptonshire, UK. Environ. Int. 2007, 33, 34–44. [Google Scholar] [CrossRef]
- Burke, Ó.; Long, S.; Murphy, P.; Organo, C.; Fenton, D.; Colgan, P.A. Estimation of Seasonal Correction Factors through Fourier Decomposition Analysis—A New Model for Indoor Radon Levels in Irish Homes. J. Radiol. Prot. 2010, 30, 433–443. [Google Scholar] [CrossRef]
- Kozak, K.; Mazur, J.; KozŁowska, B.; Karpińska, M.; Przylibski, T.A.; Mamont-Cieśla, K.; Grządziel, D.; Stawarz, O.; Wysocka, M.; Dorda, J.; et al. Correction Factors for Determination of Annual Average Radon Concentration in Dwellings of Poland Resulting from Seasonal Variability of Indoor Radon. Appl. Radiat. Isot. 2011, 69, 1459–1465. [Google Scholar] [CrossRef]
- Miles, J.C.H.; Howarth, C.B.; Hunter, N. Seasonal Variation of Radon Concentrations in UK Homes. J. Radiol. Prot. 2012, 32, 275–287. [Google Scholar] [CrossRef]
- Algin, E.; Asici, C.; Sogukpinar, H.; Akkurt, N. A case study on the use of seasonal correction factors for indoor radon measurements. Radiat. Prot. Dosim. 2018, 183, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Baeza, A.; García-Paniagua, J.; Guillén, J.; Montalbán, B. Influence of Architectural Style on Indoor Radon Concentration in a Radon Prone Area: A Case Study. Sci. Total. Environ. 2018, 610, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Tsapalov, A.; Kovler, K. Indoor Radon Regulation Using Tabulated Values of Temporal Radon Variation. J. Environ. Radioact. 2018, 183, 59–72. [Google Scholar] [CrossRef]
- Steck, D.J.; Sun, K.; William Field, R. Spatial and Temporal Variations of Indoor Airborne Radon Decay Product Dose Rate and Surface-Deposited Radon Decay Products in Homes. Health Phys. 2019, 116, 582–589. [Google Scholar] [CrossRef]
- Wrixon, A.D.; Green, B.M.R.; Lomas, P.R.; Miles, J.C.H.; Cliff, K.D.; Francis, E.; Driscoll, C.M.H.; James, A.C.; O’Riordan, M.C. Natural Radiation Exposure In Uk Dwellings; NRPB R190; HMSO: London, UK, 1988. [Google Scholar]
- Bochicchio, F.; Campos-Venuti, G.; Piermattei, S.; Nuccetelli, C.; Risica, S.; Tommasino, L.; Torri, G.; Magnoni, M.; Agnesod, G.; Sgorbati, G.; et al. Annual Average and Seasonal Variations of Residential Radon Concentration for All the Italian Regions. Radiat. Meas. 2005, 40, 686–694. [Google Scholar] [CrossRef]
- Arvela, H.; Holmgren, O.; Hänninen, P. Effect of soil moisture on seasonal variation in indoor radon concentration: Modelling and measurements in 326 Finnish houses. Radiat. Prot. Dosim. 2015, 168, 277–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, Ó.; Murphy, P. Regional Variation of Seasonal Correction Factors for Indoor Radon Levels. Radiat. Meas. 2011, 46, 1168–1172. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.; Lee, H.; Kang, D. Estimation of Seasonal Correction Factors for Indoor Radon Concentrations in Korea. Int. J. Environ. Res. Public Health 2018, 15, 2251. [Google Scholar] [CrossRef] [Green Version]
- Daraktchieva, Z.; Wasikiewicz, J.M.; Howarth, C.B.; Miller, C.A. Study of Baseline Radon Levels in the Context of a Shale Gas Development. Sci. Total Environ. 2021, 753, 141952. [Google Scholar] [CrossRef]
- Arvela, H. Seasonal-variation in radon concentration of 3000 dwellings with model comparisons. Radiat. Prot. Dosim. 1995, 59, 33–42. [Google Scholar]
- Yarmoshenko, I.; Zhukovsky, M.; Onishchenko, A.; Vasilyev, A.; Malinovsky, G. Factors Influencing Temporal Variations of Radon Concentration in High-Rise Buildings. J. Environ. Radioact. 2021, 232, 106575. [Google Scholar] [CrossRef]
- Vasilyev, A.V.; Zhukovsky, M.V. Determination of Mechanisms and Parameters Which Affect Radon Entry into a Room. J. Environ. Radioact. 2013, 124, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Onishchenko, A. Model of Radon Entry and Accumulation in Multi-Flat Energy-Efficient Buildings. J. Environ. Chem. Eng. 2021, 9, 105444. [Google Scholar] [CrossRef]
- Daraktchieva, Z. New Correction Factors Based on Seasonal Variability of Outdoor Temperature for Estimating Annual Radon Concentrations in UK. Radiat. Prot. Dosim. 2016, 175, 65–74. [Google Scholar] [CrossRef] [PubMed]
- IAEA Analytical Quality in Nuclear Applications No. IAEA/AQ/33. In National and Regional Surveys of Radon Concentration in Dwellings: Review of Methodology and Measurement Techniques; International Atomic Energy Agency: Vienna, Austria, 2013.
- Appleton, J.D.; Jones, D.G.; Miles, J.C.H.; Scivyer, C. Chapter 18 Radon Gas Hazard. In Geological Society; Engineering Geology Special Publications: London, UK, 2020; Volume 29, pp. 433–456. [Google Scholar] [CrossRef]
- Stanley, F.K.T.; Irvine, J.L.; Jacques, W.R.; Salgia, S.R.; Innes, D.G.; Winquist, B.D.; Torr, D.; Brenner, D.R.; Goodarzi, A.A. Radon Exposure Is Rising Steadily within the Modern North American Residential Environment, and Is Increasingly Uniform across Seasons. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedmann, H. Final results of the austrian radon project. Health Phys. 2005, 89, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Stojanovska, Z. Modelling of the Temporal Indoor Radon Variation in Bulgaria. Radiat. Env. Biophys. 2019, 58, 337–344. [Google Scholar] [CrossRef]
- Žunic, Z.S.; Yarmoshenko, I.V.; Birovljev, A.; Bochicchio, F.; Quarto, M.; Obryk, B.; Paszkowski, M.; Čeliković, I.; Demajo, A.; Ujić, P.; et al. Radon Survey in the High Natural Radiation Region of Niška Banja, Serbia. J. Environ. Radioact. 2007, 92, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Vienneau, D.; Boz, S.; Forlin, L.; Flückiger, B.; de Hoogh, K.; Berlin, C.; Bochud, M.; Bulliard, J.-L.; Zwahlen, M.; Röösli, M. Residential Radon–Comparative Analysis of Exposure Models in Switzerland. Environ. Pollut. 2021, 271, 116356. [Google Scholar] [CrossRef]
- Steck, D.; Capistrant, J.; Dumm, J.; Patton, E. Indoor radon exposure uncertainties caused by temporal variation. In Proceedings of the 11th International Congress of the International Radiation Protection Association, Madrid, Spain, 23–28 May 2004. [Google Scholar]
- Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.-P.; Murith, C.; Palacios, M.; Baechler, S. Major Influencing Factors of Indoor Radon Concentrations in Switzerland. J. Environ. Radioact. 2014, 129, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Yarmoshenko, I.V.; Onishchenko, A.D.; Malinovsky, G.P.; Vasilyev, A.V.; Nazarov, E.I.; Zhukovsky, M.V. Radon Concentration in Conventional and New Energy Efficient Multi-Storey Apartment Houses: Results of Survey in Four Russian Cities. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V. Low Air Exchange Rate Causes High Indoor Radon Concentration in Energy-Efficient Buildings. Radiat. Prot. Dosim. 2015, 164, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Yarmoshenko, I.; Vasilyev, A.; Ekidin, A.; Pyshkina, M.; Malinovsky, G.; Onishchenko, A.; Zhukovsky, M. Non-Destructive Measurements of Natural Radionuclides in Building Materials for Radon Entry Rate Assessment. J. Radioanal. Nucl. Chem. 2021, 328, 727–737. [Google Scholar] [CrossRef]
- Yarmoshenko, I.; Onishchenko, A.; Malinovsky, G.; Vasilyev, A. Radon time series in four flats in energy efficient multi-storey building. Radiat. Prot. Dosim. 2020, 191, 228–232. [Google Scholar] [CrossRef]
- Vasilyev, A.; Yarmoshenko, I.; Onishchenko, A.; Hoffmann, M.; Malinovsky, G.; Marenny, A.; Karl, L. Radon measurements in big buildings: Pilot study in russia. Radiat. Prot. Dosim. 2020, 191, 214–218. [Google Scholar] [CrossRef]
- RADOSYS LTD. Technical Information. Available online: http://www.radosys.com/index_htm_files/RSKS_RS_Man82-130129_c.pdf (accessed on 11 June 2021).
- Mostafa, M.Y.A.; Vasyanovich, M.; Zhukovsky, M. A Primary Standard Source of Radon-222 Based on the HPGe Detector. Appl. Radiat. Isot. 2017, 120, 101–105. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Radon Transport from Soil to Air. Rev. Geophys. 1992, 30, 137. [Google Scholar] [CrossRef]
- Porstendörfer, J. Properties and Behaviour of Radon and Thoron and Their Decay Products in the Air. J. Aerosol Sci. 1994, 25, 219–263. [Google Scholar] [CrossRef]
- Kohl, T.; Medici, F.; Rybach, L. Numerical Simulation of Radon Transport from Subsurface to Buildings. J. Appl. Geophys. 1994, 31, 145–152. [Google Scholar] [CrossRef]
- Sherman, M. A Power-Law Formulation of Laminar Flow in Short Pipes. J. Fluids Eng. 1992, 114, 601–605. [Google Scholar] [CrossRef]
- Sherman, M.H. Simplified Modeling for Infiltration and Radon Entry; LBL-31305; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1998.
Flat ID | City | Floor /Number of Storeys 1 | Building Materials 2 | Year of Construction/ Energy Eff. Class | Period of Measurements |
---|---|---|---|---|---|
1 | Ekaterinburg | 17/25 | MC | 2008/C | 27 June 2010–28 January 2011 |
2 | Ekaterinburg | 12/14 | MC | 2007/NA 3 | 24 November 2013–14 May 2014 |
3 | Ekaterinburg | 2/13 | MC, ACB | 2015/B | 12 December 2017–18 May 2018 |
4 | Ekaterinburg | 12/13 | MC, ACB | 2015/B2 | 12 December 2017–18 May 2018 |
5 | Ekaterinburg | 7/13 | MC, ACB | 2015/B2 | 12 December 2017–18 May 2018 |
6 | Ekaterinburg | 4/10 | Brick | 2007/NA | 7 July 2014–14 January 2015 |
7 | Ekaterinburg | 4/16 | MC | 2012/NA | 14 January–15 June 2014 |
8 | Ekaterinburg | 6/14 | Brick | 1989/NA | 12 January–31 May 2012 |
9 | Ekaterinburg | 3/16 | MC, ACB | 2011/B | 11 January–1 August 2013 |
10 | Ekaterinburg | 6/10 | MC, ACB | 2010/NA | 24 January–14 August 2012 |
11 | Ekaterinburg | 13/16 | MC | 2012/B | 21 January–24 July 2013 |
12 | Ekaterinburg | 3/24 | MC | 2008/C | 1 July–22 December 2011 |
13 | Ekaterinburg | 7/10 | MC | 2004/A | 22 June–26 December 2011 |
14 | Ekaterinburg | 4/16 | MC | 2003/NA | 28 February–28 April 2009 |
15 | Ekaterinburg | 1/16 | MC | 2011/C | 19 May–11 November 2014 |
16 | Ekaterinburg | 15/16 | MC, ACB | 2011/B | 20 May–20 November 2014 |
17 | Ekaterinburg | 7/9 | PRCP | 1977/NA | 7 March–31 May 2011 |
18 | Ekaterinburg | 4/13 | MC, ACB | 2015/B2 | 1 March–4 August 2017 |
19 | Chelyabinsk | 8/17 | PRCP | 2014/B | 15 May–14 November 2019 |
20 | St. Petersburg | 7/25 | MC | 2017/A | 5 September–6 December 2019 |
21 | Ekaterinburg | 10/25 | MC | 2009/B | 29 April–25 October 2020 |
22 | Ekaterinburg | 2/9 | MC, ACB | 2013/B | 27 April–12 July 2016 |
Period of Measurements | 28 November 2020–31 January 2021 | 2 August–11 November 2019 |
---|---|---|
Number of flats | 10 | |
Arithmetic mean, Bq/m3 | 63 | 29 |
Geometric mean, Bq/m3 | 60 | 25 |
GSD | 1.42 | 1.66 |
Period of Measurements | 14 January–20 April 2017 | 22 April–16 July 2017 |
---|---|---|
Number of flats | 23 | |
Arithmetic mean, Bq/m3 | 199 | 137 |
Geometric mean, Bq/m3 | 190 | 121 |
GSD | 1.36 | 1.68 |
Type of Buildings | Arithmetic Mean, Bq/m3 | Geometric Mean, Bq/m3 | GSD | N | 90th Percentile, Bq/m3 |
---|---|---|---|---|---|
Monolithic concrete | 37 | 35 | 1.39 | 50 | 55 |
Brick | 32 | 29 | 1.53 | 54 | 49 |
Panel | 26 | 25 | 1.40 | 50 | 37 |
All types | 32 | 29 | 1.48 | 154 | 50 |
City | Climate | Annual Average, °C | Geographical Location |
---|---|---|---|
Ekaterinburg | Temperate continental | 3.0 | Middle Ural Mountains |
Chelyabinsk | Temperate continental | 3.0 | South Ural Mountains |
St. Petersburg | Humid continental | 5.8 | Shores of the Neva Bay of the Gulf of Finland |
Nizhny Novgorod | Humid continental | 4.8 | East European Plain |
Parameter | Value or Equation |
---|---|
Tind | 25 °C |
AER due to wind pressure | 0.3 h−1 |
kleak (uncontrolled mode) | 0.01 K/h |
kleak (controlled mode) | 0.2 K/h |
AERunctr (T = T1) | |
AER (T = T3) | 1 h−1 |
Radon entry from building materials aD | |
Outdoor radon concentration | 5 Bq/m3 |
Descriptive Model Parameter | Number of Time Series | Mean | Median | Range |
---|---|---|---|---|
Rnmin, Bq/m3 | 12 | 68 | 75 | 8–115 |
Rnmax, Bq/m3 | 22 | 153 | 163 | 19–295 |
T1 °C | 13 | −4.7 | −4.00 | −12–2 |
T2 °C | 19 | 1.3 | 0.0 | −7–12 |
T3 °C | 12 | 16.3 | 18 | 2–22 |
Parameter | Ekaterinburg | Chelyabinsk |
---|---|---|
Annual average, Bq/m3 | 172 | 38 |
Rnmin, Bq/m3 | 108 | −2 |
Rnmax, Bq/m3 | 228 | 74 |
aD, Bq/(m3 h) | 22 | 7.3 |
T °C 1 | p (T) | Pm (T) | Rnmod | Rnmod × Pm (T) | Rnmod × P (T) |
---|---|---|---|---|---|
−27 | 0.001 | 0.001 | 25.6 | 0.03 | 0.03 |
−24 | 0.004 | 0.016 | 26.6 | 0.40 | 0.11 |
−21 | 0.010 | 0.023 | 27.8 | 0.61 | 0.26 |
−18 | 0.011 | 0.018 | 29.1 | 0.50 | 0.31 |
−15 | 0.017 | 0.036 | 30.5 | 1.05 | 0.49 |
−12 | 0.025 | 0.107 | 32.1 | 3.29 | 0.77 |
−9 | 0.036 | 0.143 | 34.0 | 4.65 | 1.19 |
−6 | 0.062 | 0.183 | 36.2 | 6.32 | 2.16 |
−3 | 0.081 | 0.166 | 35.3 | 5.60 | 2.75 |
0 | 0.122 | 0.171 | 33.4 | 5.45 | 3.90 |
3 | 0.097 | 0.091 | 29.9 | 2.62 | 2.77 |
6 | 0.075 | 0.043 | 24.7 | 1.03 | 1.77 |
9 | 0.077 | 0.002 | 19.0 | 0.04 | 1.41 |
12 | 0.093 | 0 | 14.3 | 0 | 1.30 |
15 | 0.097 | 0 | 11.4 | 0 | 1.08 |
18 | 0.086 | 0 | 9.9 | 0 | 0.83 |
21 | 0.054 | 0 | 9.2 | 0 | 0.49 |
24 | 0.030 | 0 | 8.9 | 0 | 0.26 |
27 | 0.016 | 0 | 8.7 | 0 | 0.14 |
30 | 0.004 | 0 | 8.7 | 0 | 0.03 |
33 | 0.001 | 0 | 8.6 | 0 | 0.01 |
= 32 Bq/m3 | = 22 Bq/m3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Onishchenko, A. Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings. Atmosphere 2021, 12, 930. https://doi.org/10.3390/atmos12070930
Yarmoshenko I, Malinovsky G, Vasilyev A, Onishchenko A. Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings. Atmosphere. 2021; 12(7):930. https://doi.org/10.3390/atmos12070930
Chicago/Turabian StyleYarmoshenko, Ilia, Georgy Malinovsky, Aleksey Vasilyev, and Aleksandra Onishchenko. 2021. "Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings" Atmosphere 12, no. 7: 930. https://doi.org/10.3390/atmos12070930
APA StyleYarmoshenko, I., Malinovsky, G., Vasilyev, A., & Onishchenko, A. (2021). Seasonal Variation of Radon Concentrations in Russian Residential High-Rise Buildings. Atmosphere, 12(7), 930. https://doi.org/10.3390/atmos12070930