Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes
Abstract
:1. Introduction
2. Model, Data and Simulations
2.1. Simulations
2.2. Cumulus Schemes
- New Simplified Arakawa–Schubert (NewSAS) scheme [51]: The NewSAS is a mass flux scheme based on Pan and Wu [52] with revisions made to the entrainment and detrainment formulation following from large-eddy simulation studies. The deep convection was made stronger by increasing the maximum allowable mass flux at the cloud base.
- Multi-Scale Kain–Fritsch (MSKF) scheme [31]: The MSKF is a mass flux scheme that was designed to update the Kain–Fritsch (KF) scheme [53,54], which has no scale dependency and was designed for ∼25 km grids. Scale-dependent parameters that were introduced to KF include the adjustment timescale and the minimum entrainment rate. Updates were also made to the fallout rate and stabilising capacity.
- Grell–Freitas scheme [32]: Grell–Freitas is a mass flux scheme, modified to work across grid sizes from the mesoscale to convective scales. Following a proposal from Arakawa et al. [55], the strength of the parameterized tendency was scaled by a factor based on the fractional updraft area . As the grid size decreases, the fractional updraft area increases. The scheme places an upper limit on the updraft area by reducing the parameterized cloud radius (or equivalently increasing the initial entrainment rate).
- Betts–Miller–Janjic (BMJ) scheme [56,57]: The BMJ scheme is an update of the Betts–Miller (BM) convective adjustment scheme [58,59]. The deep convection profiles and the relaxation time in BMJ are variable and depend on the cloud efficiency, a nondimensional parameter that characterizes the convective regime.
2.3. Observations Used
2.4. Objective Verification
3. Event Description
4. Results
4.1. Twenty-Four-Hour Total Rainfall
4.2. Resolved Versus Convective and Hourly Rainfall
4.3. Wind and Minimum Sea Level Pressure
4.4. Storm Location
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter Name | Parameter Selection |
---|---|
run_days | =0, |
run_hours | =72, |
run_minutes | =0, |
run_seconds | =0, |
start_year | =2019, |
start_month | =03, |
start_day | =13, |
start_hour | =00, |
end_year | =2019, |
end_month | =03, |
end_day | =16, |
end_hour | =00, |
y interval_seconds | =10,800 |
input_from_file | =.true., |
history_interval | =60, |
frames_per_outfile | =1, |
restart | =.false., |
restart_interval | =1440, |
time_step | =36, |
time_step_fract_num | =0, |
time_step_fract_den | =1, |
max_dom | =1, |
e_we | =484, |
e_sn | =460, |
e_vert | =33, |
p_top_requested | =5000, |
num_metgrid_levels | =32, |
num_metgrid_soil_levels | =4, |
dx | =6000, |
dy | =6000, |
grid_id | =1, |
parent_id | =0, |
i_parent_start | =1, |
j_parent_start | =1, |
parent_grid_ratio | =1, |
parent_time_step_ratio | =1, |
feedback | =1, |
smooth_option | =0 |
physics_suite | =’TROPICAL’ |
mp_physics | =−1, |
cu_physics | =2, |
ra_lw_physics | =−1, |
ra_sw_physics | =−1, |
bl_pbl_physics | =−1, |
sf_sfclay_physics | =−1, |
sf_surface_physics | =−1, |
radt | =30, |
bldt | =0, |
cudt | =5, |
icloud | =1, |
num_land_cat | =21, |
sf_urban_physics | =0, |
References
- Houze, R.A.J. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 1994; p. 573. [Google Scholar]
- Knight, D.; Davis, R. Contribution of tropical cyclones to extreme rainfall in the Southeastern United States. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Pillay, M.; Fitchett, J. Southern Hemisphere Tropical Cyclones: A Critical Analysis of Regional Characteristics. Int. J. Climatol. 2020, 41. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Molua, E.; Akamin, A. Economic vulnerability to tropical storms on the southeastern coast of Africa. JàMbá J. Disaster Risk Stud. 2020, 12, 2072–2845. [Google Scholar] [CrossRef]
- Chikoore, H.; Vermeulen, J.; Jury, M. Tropical cyclones in the Mozambique Channel: January–March 2012. Nat. Hazards 2015, 77. [Google Scholar] [CrossRef]
- Davis-Reddy, C.; Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa (Second Edition) CSIR. 2017. Available online: https://www.csir.co.za/sites/default/files/Documents/SADC%20Handbook_Second%20Edition_full%20report.pdf (accessed on 10 May 2021).
- Mavume, A.; Rydberg, L.; Rouault, M.; Lutjeharms, J. Climatology and Landfall of Tropical Cyclones in the South-West Indian Ocean. West. Indian Ocean. J. Mar. Sci. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Reason, C.J.C.; Keibel, A. Tropical Cyclone Eline and Its Unusual Penetration and Impacts over the Southern African Mainland. Weather Forecast. 2004, 19, 789–805. [Google Scholar] [CrossRef]
- Moses, O.; Ramotonto, S. Assessing forecasting models on prediction of the tropical cyclone Dineo and the associated rainfall over Botswana. Weather Clim. Extrem. 2018, 21, 102–109. [Google Scholar] [CrossRef]
- Mhlanga, C.; Muzingili, T.; Mpambela, M. Natural disasters in Zimbabwe: The primer for social work intervention. Afr. J. Soc. Work. 2019, 9, 46–54. [Google Scholar]
- Reunion, M.F.L. Past and Current Hurricane System. Available online: http://www.meteofrance.re/cyclone/saisons-passees (accessed on 30 April 2021).
- Malherbe, J.; Engelbrecht, F.; Landman, W. Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Clim. Dyn. 2013, 40. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Johannessen, J.A.; Yan, X.H.; Geng, X.; Zhong, X.; Zhu, L. A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data. Remote Sens. 2019, 11, 2837. [Google Scholar] [CrossRef] [Green Version]
- Wolrd Meteorological Organization. Reducing Vulnerability to Extreme Hydro-Meteorological Hazards in Mozambique after Cyclone IDAI: WMO Mission Report Following Tropical Cyclone IDAI; WMO: Geneva, Switzerland, 2019; p. 64. [Google Scholar]
- Mongo, E.; Cambaza, E.; Nhambire, R.; Singo, J.; Machava, E. Outbreak of Cholera Due to Cyclone Idai in Central Mozambique. In Evaluation of Health Services; IntechOpen: London, UK, 2020; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zimba, S.K.; Houane, M.J.; Chikova, A.M. Impact of Tropical Cyclone Idai on the Southern African Electric Power Grid. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Charrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sens. 2021, 13, 201. [Google Scholar] [CrossRef]
- Frieden, M. The Aftermath of Cyclone Idai—Building Bridges Where We Can; BMJ Publishing Group: London, UK, 2019. [Google Scholar]
- Chari, F.; Ngcamu, B.; Novukela, C. Supply chain risks in humanitarian relief operations: A case of Cyclone Idai relief efforts in Zimbabwe. J. Humanit. Logist. Supply Chain. Manag. 2020, 10, 320–361. [Google Scholar] [CrossRef]
- Suarez, P. Linking Climate Knowledge and Decisions: Humanitarian Challenges; Boston University: Boston, MA, USA, 2009. [Google Scholar]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Dyson, L.; Van Heerden, J. The heavy rainfall and floods over the northeastern interior of South Africa during February 2000. S. Afr. J. Sci. 2001, 97, 80–86. [Google Scholar]
- Stensrud, D. Parametrization schemes. Keys to understanding numerical weather Pred. In Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2007; p. 480. [Google Scholar] [CrossRef]
- Villafuerte, M., II; Lambrento, J.; Hodges, K.; Cruz, F.; Cinco, T.; Narisma, G. Sensitivity of tropical cyclones to convective parameterization schemes in RegCM4. Clim. Dyn. 2021, 56, 1–18. [Google Scholar] [CrossRef]
- Fuentes Franco, R.; Giorgi, F.; Coppola, E.; Zimmermann, K. Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Clim. Dyn. 2017, 49. [Google Scholar] [CrossRef]
- Lim, Y.K.; Schubert, S.D.; Reale, O.; Lee, M.I.; Molod, A.M.; Suarez, M.J. Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS-5 Model. J. Clim. 2015, 28, 551–573. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, C.; Balaji, C. Sensitivity of tropical cyclone Jal simulations to physics parameterizations. J. Earth Syst. Sci. 2012, 121. [Google Scholar] [CrossRef] [Green Version]
- Davis, C. Resolving Tropical Cyclone Intensity in Models. Geophys. Res. Lett. 2018, 45. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Peerlings, E. Mesoscale Model Simulation of a Severe Summer Thunderstorm in The Netherlands: Performance and Uncertainty Assessment for Parameterised and Resolved Convection. Atmosphere 2020, 11, 811. [Google Scholar] [CrossRef]
- Honnert, R.; Efstathiou, G.A.; Beare, R.J.; Ito, J.; Lock, A.; Neggers, R.; Plant, R.S.; Shin, H.H.; Tomassini, L.; Zhou, B. The Atmospheric Boundary Layer and the “Gray Zone” of Turbulence: A Critical Review. J. Geophys. Res. Atmos. 2020, 125, e2019JD030317. [Google Scholar] [CrossRef]
- Zheng, Y.; Alpaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Somses, S.; Bopape, M.J.M.; Ndarana, T.; Fridlind, A.; Matsui, T.; Phaduli, E.; Limbo, A.; Maikhudumu, S.; Maisha, R.; Rakate, E. Convection parametrization and multi-nesting dependence of a heavy rainfall event over Namibia with Weather Research and Forecasting (WRF) model. Climate 2020, 8, 112. [Google Scholar] [CrossRef]
- Champion, A.; Hodges, K. Importance of resolution and model configuration when downscaling extreme precipitation. Tellus A 2014, 66. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Huang, X.Y. A Description of the Advanced Research WRF Model Version 4 (No. NCAR/TN-556+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Bopape, M.M.; Sithole, H.; Motshegwa, T.; Rakate, E.; Engelbrecht, F.; Morgan, A.; Ndimeni, L.; Botai, O.J. A Regional Project in Support of the SADC Cyber-Infrastructure Framework Implementation: Weather and Climate. Data Sci. J. 2019, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.; Roberts, N.; Lean, H.; Ballard, S.; Charlton-Perez, C. Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl. 2016, 23. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.; Skamarock, W.; Klemp, J. The Resolution Dependence of Explicitly Modeled Convective Systems. Mon. Weather Rev. 1997, 125. [Google Scholar] [CrossRef]
- Roberts, N. Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteorol. Appl. 2008, 15, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Bryan, G.; Wyngaard, J.; Fritsch, J. Resolution Requirements for the Simulation of Deep Moist Convection. Mon. Weather Rev. 2003, 131. [Google Scholar] [CrossRef]
- Sela, J. Implementation of the sigma pressure hybrid coordinate into GFS. NCEP Off. Note 2009, 461, 1–25. [Google Scholar]
- Wang, W. WRF: More Runtime Options; WRF Tutorial, UNSW: Sydney, Australia, 2017; p. 46. [Google Scholar]
- Sun, B.Y.; Bi, X. Validation for a tropical belt version of WRF: Sensitivity tests on radiation and cumulus convection parameterizations. Atmos. Ocean. Sci. Lett. 2019, 12, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.; Delamere, J.; Mlawer, E.; Shepard, M.; Clough, S.; Collins, W. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kim, J.H.; Lim, J.O.; Dudhia, J. The WRF single moment microphysics scheme (WSM). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Matsui, T.; Cheung, S.; Zupanski, M.; Peters-Lidard, C. Impact of Assimilated Precipitation-Sensitive Radiances on the NU-WRF Simulation of the West African Monsoon. Mon. Weather Rev. 2017, 145. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme For Cumulus Parameterization In Large-Scale Models. Mon. Weather Rev. 1989, 117. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Pan, H.L. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Pan, H.L.; Wu, W.S. Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model; NMC Office Note 409; National Centers for Environmental Prediction: Silver Spring, MD, USA, 1995; 40p. [Google Scholar]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, A.; Jung, J.H.; Wu, C.M. Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys. 2011, 11, 3731–3742. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models”. J. Atmos. Sci. 2000, 57, 3686. [Google Scholar] [CrossRef]
- Betts, A.K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc. 1986, 112, 677–691. [Google Scholar] [CrossRef]
- Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, C.; Xie, P. Integrated Multi-Satellite Retrievals for GPM (IMERG), Version 4.4; NASA’s Precipitation Processing Center: Washington, DC, USA, 2014.
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production; ECMWF: Reading, UK, 2016. [Google Scholar]
- Jones, P. First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates. Mon. Weather Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- Lean, H.W.; Clark, P.A.; Dixon, M.; Roberts, N.M.; Fitch, A.; Forbes, R.; Halliwell, C. Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom. Mon. Weather Rev. 2008, 136, 3408–3424. [Google Scholar] [CrossRef]
- Beusch, L.; Foresti, L.; Gabella, M.; Hamann, U. Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks. Remote Sens. 2018, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the State-Of-The-Art Gridded Precipitation Products over Mountainous Terrain: A Regional Study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.; Pan, M.; Roy, T.; Weedon, G.; Pappenberger, F.; van Dijk, A.; Huffman, G.; Adler, R.; Wood, E. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Dezfuli, A.; Ichoku, C.; Huffman, G.; Mohr, K.; Selker, J.; van de Giesen, N.; Hochreutener, R.; Annor, F. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 2017, 18. [Google Scholar] [CrossRef]
- Chu, Q.; Xu, Z.; Chen, Y.; Han, D. Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrol. Earth Syst. Sci. 2018, 22, 3391–3407. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.M.; Tan, Z.M. Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res. 2009, 92, 190–211. [Google Scholar] [CrossRef]
- Shepherd, T.; Walsh, K. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: Impact of convective asymmetry. Meteorol. Atmos. Phys. 2017, 129. [Google Scholar] [CrossRef]
- Bonekamp, P.N.J.; Collier, E.; Immerzeel, W.W. The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas. J. Hydrometeorol. 2018, 19, 1565–1581. [Google Scholar] [CrossRef] [Green Version]
- Kanase, D.R.; Deshpande, M.; Phani, M.K.; Mukhopadhyay, P. Evaluation of convective parameterization schemes in simulation of tropical cyclones by Climate Forecast System model: Version 2. J. Earth Syst. Sci. 2020, 129. [Google Scholar] [CrossRef]
- Reddy, V.; Prasad, S.; Krishna, M.; Reddy, K. Effect of cumulus and microphysical parameterizations on JAL cyclone prediction. Indian J. Radio Space Phys. 2014, 43, 103–123. [Google Scholar]
- Fahad, A.A.; Tanvir, A. Impacts of different cumulus physics over south Asia region with case study tropical cyclone Viyaru. arXiv 2015, arXiv:1506.01481. [Google Scholar]
- Biswas, M.; Bernardet, L.; Dudhia, J. Sensitivity of hurricane forecasts to cumulus parameterizations in the Hurricane Weather Research and Forecasting (HWRF) model. Geophys. Res. Lett. 2014, 41. [Google Scholar] [CrossRef]
Model | WRF 4.1.2 |
---|---|
Grid length | 6 km |
Simulation period | 00 UTC 13 March to 00UTC 16 March 2019 |
Forcing global model | Global Forecast System (GFS) |
Physics settings | |
Cloud microphysics | WRF Single Moment 6 class (WSM6) |
Planetary boundary layer | Yonsei University (YSU) |
Short- and long-wave radiation | Rapid Radiation Transfer Model (RRTM) |
Cumulus schemes (experiments) | New Tiedtke (Tiedtke) |
New Simplified Arakawa–Schubert (NewSAS) | |
Multi-Scale Kain–Fritsch (MSKF) | |
Grell–Freitas | |
Betts–Miller–Janjic (BMJ) | |
No-convection scheme (NOCP) |
City | Obs | BMJ | Grell–Freitas | MSKF | NewSAS | Tiedtke | NOCP |
---|---|---|---|---|---|---|---|
Beira | 216.9 | 159.23 | 133.47 | 170.31 | 168.62 | 153.36 | 198.37 |
Chimoio | 77.7 | 31.67 | 14.657 | 13.90 | 2.72 | 10.31 | 20.48 |
Espungaber | 144.3 | 25.19 | 34.1324 | 28.25 | 21.69 | 26.64 | 30.05 |
13 March 2019 | ||||||
BMJ | Grell–Freitas | MSKF | NewSAS | Tiedtke | NOCP | |
Bias | −20.74 | −20.22 | −20.42 | −21.27 | −21.79 | −21.03 |
RMSE | 77.36 | 73.42 | 72.14 | 80.45 | 76.98 | 74.27 |
14 March 2019 | ||||||
BMJ | Grell–Freitas | MSKF | NewSAS | Tiedtke | NOCP | |
Bias | −18.65 | −17.67 | −18.36 | −19.27 | −19.65 | −18.93 |
RMSE | 62.93 | 58.16 | 62.74 | 66.76 | 66.64 | 61.76 |
15 March 2019 | ||||||
BMJ | Grell–Freitas | MSKF | NewSAS | Tiedtke | NOCP | |
Bias | −4.58 | −2.47 | −3.77 | −3.87 | −4.4 | −3.9 |
RMSE | 39.06 | 53.67 | 59.4 | 52.58 | 43.37 | 47.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bopape, M.-J.M.; Cardoso, H.; Plant, R.S.; Phaduli, E.; Chikoore, H.; Ndarana, T.; Khalau, L.; Rakate, E. Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes. Atmosphere 2021, 12, 932. https://doi.org/10.3390/atmos12080932
Bopape M-JM, Cardoso H, Plant RS, Phaduli E, Chikoore H, Ndarana T, Khalau L, Rakate E. Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes. Atmosphere. 2021; 12(8):932. https://doi.org/10.3390/atmos12080932
Chicago/Turabian StyleBopape, Mary-Jane M., Hipolito Cardoso, Robert S. Plant, Elelwani Phaduli, Hector Chikoore, Thando Ndarana, Lino Khalau, and Edward Rakate. 2021. "Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes" Atmosphere 12, no. 8: 932. https://doi.org/10.3390/atmos12080932
APA StyleBopape, M. -J. M., Cardoso, H., Plant, R. S., Phaduli, E., Chikoore, H., Ndarana, T., Khalau, L., & Rakate, E. (2021). Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes. Atmosphere, 12(8), 932. https://doi.org/10.3390/atmos12080932