Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Radon Monitor Method
3. Results
3.1. Temporal Variation of Radon Concentration
3.2. Spatial Variation of Radon Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.H.; Hwang, W.J.; Cho, J.S.; Kang, D.R. Attributable risk of lung cancer deaths due to indoor radon exposure. Ann. Occup. Environ. Med. 2016, 28, 8. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.J. Summary of the 2008 report of the United Nations Scientific Committee on the effects of atomic radiation. Radiat. Prot. Bull. 2012, 4, 39–43. [Google Scholar]
- Hendry, J.H.; Simon, S.L.; Wojcik, A.; Sohrabi, M.; Burkart, W.; Cardis, E.; Laurier, D.; Tirmarche, M.; Hayata, I. Human exposure to high natural background radiation: What can it teach us about radiation risks? J. Radiol. Prot. 2009, 29, A29–A42. [Google Scholar] [CrossRef]
- Kudo, H.; Tokonami, S.; Omori, Y.; Ishikawa, T.; Iwaoka, K.; Sahoo, S.K.; Akata, N.; Hosoda, M.; Wanabongse, P.; Pornnumpa, C.; et al. Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat. Prot. Dosim. 2015, 167, 155–159. [Google Scholar] [CrossRef]
- Stoulos, S.; Ioannidou, A. Radon and its progenies variation in the urban polluted atmosphere of the Mediterranean city of Thessaloniki, Greece. Environ. Sci. Pollut. Res. Int. 2020, 27, 1160–1166. [Google Scholar] [CrossRef]
- JoNsson, G. Radon gas—Where from and what to do? Radiat. Meas. 1995, 25, 537–546. [Google Scholar] [CrossRef]
- Vukotic, P.; Antovic, N.; Djurovic, A.; Zekic, R.; Svrkota, N.; Andjelic, T.; Svrkota, R.; Mrdak, R.; Bjelica, N.; Djurovic, T.; et al. Radon survey in Montenegro—A base to set national radon reference and “urgent action” level. J. Environ. Radioact. 2018, 196, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, G.K.; Phillips, P.; Denman, A.; Sperrin, M.; Pearce, G. Radon levels in abandoned metalliferous mines, Devon, southwest England. Ecotoxicol. Environ. Saf. 2001, 49, 281–292. [Google Scholar] [CrossRef]
- Wang, Y.W.; Luo, W.J.; Zeng, G.N.; Wang, Y.; Yang, H.L.; Wang, M.F.; Zhang, L.; Cai, X.L.; Chen, J.; Cheng, A.Y.; et al. High 222Rn concentrations and dynamics in Shawan cave, southwest China. J. Environ. Radioact. 2019, 199, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, R. The Release/Enrichment Mechanism of Ursnium during Chemical Weathring in Rock-Soil Interface in Weathering Profile Derived from Carbonate Rocks. Master’s Thesis, University of South China, Hengyang, China, 2016. [Google Scholar]
- Smetanová, I.; Holý, K.; Luhová, Ľ.; Csicsay, K.; Haviarová, D.; Kunáková, L. Seasonal variation of radon and CO2 in the Važecká Cave, Slovakia. Nukleonika 2020, 65, 153–157. [Google Scholar] [CrossRef]
- Ambrosino, F.; Thinova, L.; Briestensky, M.; Sabbarese, C. Study of 222Rn continuous monitoring time series and dose assessment in six European caves. Radiat. Prot. Dosim. 2020, 191, 233–237. [Google Scholar] [CrossRef]
- Kávási, N.; Somlai, J.; Szeiler, G.; Szabó, B.; Schafer, I.; Kovács, T. Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary. Radiat. Meas. 2010, 45, 1068–1071. [Google Scholar] [CrossRef]
- Cigna, A.A. Radon in caves. Int. J. Speleol. 2005, 34, 1–18. [Google Scholar] [CrossRef]
- Lu, X.W.; Li, L.; Zhang, X.L. An environmental risk assessment of radon in Lantian karst cave of Shaanxi, China. Water Air Soil Pollut. 2009, 198, 307–316. [Google Scholar] [CrossRef]
- Lario, J.; Sanchez-Moral, S.; Canaveras, J.C.; Cuezva, S.; Soler, V. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user’s annual effective dose. J. Environ. Radioact. 2005, 80, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Zwack, L.M.; Brueck, S.E. Exposure to radon and progeny in a tourist cavern. Health Phys. 2021, 120, 628–634. [Google Scholar] [CrossRef]
- Sainz, C.; Rabago, D.; Fernandez, E.; Quindos, J.; Quindos, L.; Fernandez, A.; Fuente, I.; Arteche, J.L.; Quindos, L.S.; Celaya, S. Variations in radon dosimetry under different assessment approaches in the Altamira Cave. J. Radiol. Prot. 2020, 40, 367–380. [Google Scholar] [CrossRef]
- Solomon, S.B. Reassessment of inhalation doses to workers in Australian show caves. Radiat. Prot. Dosim. 2019, 184, 298–301. [Google Scholar] [CrossRef]
- Smith, M.E.; Dumitru, O.A.; Burghele, B.D.; Cucos, A.; Onac, B.P. Radon concentration in three Florida caves: Florida, Jennings, and Ocala. Carbonates Evaporites 2019, 34, 433–439. [Google Scholar] [CrossRef]
- Garcia Paz, F.A.; Gonzalez Romero, Y.A.; Zalakeviciute, R. Radon (222Rn) concentrations in the touristic Jumandy cave in the Amazon region of Ecuador. J. Radiat. Res. 2019, 60, 759–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.X.; Tao, Z.; Chen, B.Q.; Xiang, X.; Wang, X.X. Variation characteristics of the radon’s concentration and protection to the harm in the Xueyu cave, Chongqing. Carsol. Sin. 2013, 32, 472–479. [Google Scholar]
- Currivan, L.; Murray, M.; O’Colmain, M.; Pollard, D. Radon in Irish show caves—Personal monitoring data from 2001–2006. Am. Inst. Phys. 2008, 1034, 161–164. [Google Scholar]
- Zhang, Q.; Zhou, Z.F.; Chen, Q.; Xie, Y.T. Study on spatial distribution and diurnal variation and causes of carbon dioxide concentration in Zhijin cave environment. Sci. Technol. Eng. 2016, 16, 18–27. [Google Scholar]
- Yang, J.; Dong, Y.Y.; Wu, Q.F.; Fang, Z.; Niu, X.J.; Wang, Y.Q.; Weng, Q.B. Diversity and network analysis of culturable bacteria on stalactite sediments in Zhijin cave. Microbiol. China 2021, 48, 1514–1527. [Google Scholar]
- Cao, M.D.; Zhou, Z.F.; Pan, Y.X.; Zhang, J.; Yin, C.; Zhang, S.Y. Temporal and spatial variation of water chemistry and environmental indication of drip water in karst cave—A case study of Zhijin, GuiZhou province. Res. Soil Water Conserv. 2017, 24, 339–346. [Google Scholar]
- Shen, G.J.; Li, S.Z. Radon concentration in tourist caves of Guizhou province. J. Guizhou Univ. 1988, 4, 295–299. [Google Scholar]
- He, W.; Li, P. Evolution feature and science values of Zhijin cave. Guizhou Sci. 2016, 34, 34–36. [Google Scholar]
- Wei, Y.L.; Chen, W.H.; Luo, Q.K.; Luo, S.W. Study on the karst landscape formation mechanism and model of the Zhijindong Cave Global Geopark, Guizhou province. Geol. Rev. 2018, 64, 457–476. [Google Scholar]
- Pan, Y.X.; Zhou, Z.F.; Zhang, J.; Wang, Y.L.; Tian, Z.H. Temporal and spatial distribution characteristics of microclimate environmental elements in Karst tourism caves—A case study of Zhijin cave in Guizhou province. Sci. Technol. Eng. 2018, 18, 20–30. [Google Scholar]
- Song, Z.R.; Xin, Z.W.; Liu, Y.Z.; Wang, J. The discussion of measuring time by RAD-7 radon detector. Sichuan Environ. 2017, 36, 4–7. [Google Scholar]
- Paquet, F.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Marsh, J.; Fell, T.P.; Smith, T.; Nosske, D.; Eckerman, K.F.; Berkovski, V.; et al. ICRP Publication 137: Occupational intakes of radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef] [PubMed]
- Burghele, B.D.; Cucos, A.; Papp, B.; Stetca, F.A.; Mirea, I.; Constantin, S. Distribution of radon gas in romanian show caves and radiation safety. Radiat. Prot. Dosim. 2018, 181, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, J.F.; Solomon, S.; Takala, J.; Jung, T.; Strand, P.; Murith, C.; Kiselev, S.; Zhou, W.; Shannoun, F.; Janssens, A. ICRP Publication 126: Radiological protection against radon exposure. Ann. ICRP 2014, 43, 5–73. [Google Scholar] [CrossRef]
- Vennart, J. The 1990 recommendations of the International Commission on Radiological Protection. J. Radiol. Prot. 1991, 11, 199–203. [Google Scholar] [CrossRef]
- Kowalczk, A.J.; Froelich, P.N. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth Planet. Sci. Lett. 2010, 289, 209–219. [Google Scholar] [CrossRef]
- Wang, H.; Luo, S.Q.; Yang, Q.D.; Peng, X. The changing rules and factors of CO2 concentration in Zhijin Cave of Guizhou province in past 20 Years. Hubei Agric. Sci. 2014, 53, 1268–1270. [Google Scholar]
Classify | Exposure Time (h) | Average Radon Concentration (Bq/m3) | Dose (mSv) |
---|---|---|---|
Tourists | 1.5 | August: 1126 | 0.02 |
December: 99 | 0.002 | ||
Tour guide | 1500 | 509 | 9.7 |
Cleaner | 2250 | 509 | 14.6 |
Photographer | 3285 | Site #15: 405 | 16.9 |
Site #12: 541 | 22.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, X.; Luo, W.; Wang, Y.; Zeng, G.; Wang, S. Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China). Atmosphere 2021, 12, 967. https://doi.org/10.3390/atmos12080967
Weng X, Luo W, Wang Y, Zeng G, Wang S. Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China). Atmosphere. 2021; 12(8):967. https://doi.org/10.3390/atmos12080967
Chicago/Turabian StyleWeng, Xu, Weijun Luo, Yanwei Wang, Guangneng Zeng, and Shijie Wang. 2021. "Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China)" Atmosphere 12, no. 8: 967. https://doi.org/10.3390/atmos12080967
APA StyleWeng, X., Luo, W., Wang, Y., Zeng, G., & Wang, S. (2021). Spatiotemporal Variations of Radon Concentration in the Atmosphere of Zhijindong Cave (China). Atmosphere, 12(8), 967. https://doi.org/10.3390/atmos12080967