Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Definition of Extreme Heat Events and Warm Events
2.3. Research Outline
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 159–254. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves-Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ. Int. 2016, 89–90, 193–203. [Google Scholar] [CrossRef]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Iippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef] [PubMed]
- D’Ippoliti, D.; Michelozzi, P.; Marino, C. The impact of heat waves on mortality in 9 European cities: Results from the Euro HEATproject. Environ. Health 2010, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S.; Burattini, C.; Mattoni, B. On the thermal response of buildings under the synergic effect of heat waves and urban heat island. Sol. Energy 2020, 211, 1270–1282. [Google Scholar] [CrossRef]
- McEvoy, D.; Ahmed, I.; Mullett, J. The impact of the 2009 heat wave on Melbourne’s critical infrastructure. Local Environ. 2012, 17, 783–796. [Google Scholar] [CrossRef]
- Rübbelke, D.; Vögele, S. Impacts of climate change on European critical infrastructures: The case of the power sector. Environ. Sci. Policy 2011, 14, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Zander, K.K.; Botzen, W.J.W.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 2015, 5, 647–651. [Google Scholar] [CrossRef]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Ratnayake, H.U.; Kearney, M.R.; Govekar, P.; Karoly, D.; Welbergen, J.A. Forecasting wildlife die-offs from extreme heat events. Anim. Conserv. 2019, 22, 386–395. [Google Scholar] [CrossRef]
- Grimm, N.B.; Chapin, F.S.; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Potopová, V.; Boroneanţ, C.; Možný, M.; Soukup, J. Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int. J. Climatol. 2016, 36, 3741–3758. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. Is snow in the Alps receding or disappearing? Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Gilaberte-Búrdalo, M.; López-Martín, F.; Pino-Otín, M.R.; López-Moreno, J.I. Impacts of climate change on ski industry. Environ. Sci. Policy 2014, 44, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.P.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef]
- Menzel, A.; Seifert, H.; Estrella, N. Effects of recent warm and cold spells on European plant phenology. Int. J. Biometeorol. 2011, 55, 921–932. [Google Scholar] [CrossRef]
- Flanigan, N.P.; Bandara, R.; Wang, F.; Jastrzębowski, S.; Hidayati, S.N.; Walck, J.L. Germination responses to winter warm spells and warming vary widely among woody plants in a temperate forest. Plant. Biol. 2020, 22, 1052–1061. [Google Scholar] [CrossRef]
- Ladwig, L.M.; Chandler, J.L.; Guiden, P.W.; Henn, J.J. Extreme winter warm event causes exceptionally early bud break for many woody species. Ecosphere 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Siegmund, J.F.; Wiedermann, M.; Donges, J.F.; Donner, R.V. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 2016, 13, 5541–5555. [Google Scholar] [CrossRef] [Green Version]
- Fox, N.; Jönsson, A.M. Climate effects on the onset of flowering in the United Kingdom. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef]
- Vitasse, Y.; Rebetez, M. Unprecedented risk of spring frost damage in Switzerland and Germany in 2017. Clim. Chang. 2018, 149, 233–246. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.M.; Bochenek, B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, X.; Wilson, A.M.; Silander, J.A. Predicting autumn phenology: How deciduous tree species respond to weather stressors. Agric. For. Meteorol. 2018, 250–251, 127–137. [Google Scholar] [CrossRef]
- Zani, P.A. Climate change trade-offs in the side-blotched lizard (Uta stansburiana): Effects of growing-season length and mild temperatures on winter survival. Physiol. Biochem. Zool. 2008, 81, 797–809. [Google Scholar] [CrossRef]
- Williams, C.M.; Henry, H.A.L.; Sinclair, B.J. Cold truths: How winter drives responses of terrestrial organisms to climate change. Biol. Rev. 2015, 90, 214–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallinat, A.S.; Primack, R.B.; Wagner, D.L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 2015, 30, 169–176. [Google Scholar] [CrossRef]
- Buckley, L.B.; Huey, R.B. Temperature extremes: Geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Chang. Biol. 2016, 22, 3829–3842. [Google Scholar] [CrossRef]
- McDermott Long, O.; Warren, R.; Price, J.; Brereton, T.M.; Botham, M.S.; Franco, A.M.A. Sensitivity of UK butterflies to local climatic extremes: Which life stages are most at risk? J. Anim. Ecol. 2017, 86, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 220–237. [Google Scholar] [CrossRef]
- Ma, C.-S.; Ma, G.; Pincebourde, S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. Annu. Rev. Entomol. 2021, 66, 1–22. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest insects and climate change. Curr. For. Rep. 2018, 4, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Benítez, A.; García-Herrera, R.; Barriopedro, D.; Sousa, P.M.; Trigo, R.M. June 2017: The Earliest European Summer Mega-heatwave of Reanalysis Period. Geophys. Res. Lett. 2018, 45, 1955–1962. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A. How unusualwere June 2019 temperatures in the context of european climatology? Atmosphere 2020, 11, 697. [Google Scholar] [CrossRef]
- Founda, D.; Varotsos, K.V.; Pierros, F.; Giannakopoulos, C. Observed and projected shifts in hot extremes’ season in the Eastern Mediterranean. Glob. Planet. Chang. 2019, 175, 190–200. [Google Scholar] [CrossRef]
- Brooke Anderson, G.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennet, L.; Halling, A.; Berglund, J. Increased incidence of Lyme borreliosis in southern Sweden following mild winters and during warm, humid summers. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Pokorná, L.; Kučerová, M.; Huth, R. Annual cycle of temperature trends in Europe, 1961–2000. Glob. Planet. Chang. 2018, 170, 146–162. [Google Scholar] [CrossRef]
- Lorenz, R.; Stalhandske, Z.; Fischer, E.M. Detection of a Climate Change Signal in Extreme Heat, Heat Stress, and Cold in Europe From Observations. Geophys. Res. Lett. 2019, 46, 8363–8374. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing heatwave hazards in the southeastern European Union capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Kyselý, J. Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Climatol. 2010, 30, 89–109. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and their circulation conditions. Int. J. Climatol. 2016, 36, 770–782. [Google Scholar] [CrossRef]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Temporal variability of summer temperature extremes in Poland. Atmosphere 2017, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Fenner, D.; Holtmann, A.; Krug, A.; Scherer, D. Heat waves in Berlin and Potsdam, Germany—Long-term trends and comparison of heat wave definitions from 1893 to 2017. Int. J. Climatol. 2019, 39, 2422–2437. [Google Scholar] [CrossRef]
- Graczyk, D.; Pińskwar, I.; Kundzewicz, Z.W.; Hov, Ø.; Førland, E.J.; Szwed, M.; Choryński, A. The heat goes on—Changes in indices of hot extremes in Poland. Theor. Appl. Climatol. 2017, 129, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Unkašević, M.; Tošić, I. An analysis of heat waves in Serbia. Glob. Planet. Chang. 2009, 65, 17–26. [Google Scholar] [CrossRef]
- Corobov, R.; Sheridan, S.; Overcenco, A.; Terinte, N. Air temperature trends and extremes in Chisinau (Moldova) as evidence of climate change. Clim. Res. 2010, 42, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, O.; Lee, H.; Snizhko, S.; Mayer, H. Long-term analysis of heat waves in Ukraine. Int. J. Climatol. 2014, 34, 1642–1650. [Google Scholar] [CrossRef]
- Spinoni, J.; Lakatos, M.; Szentimrey, T.; Bihari, Z.; Szalai, S.; Vogt, J.; Antofie, T. Heat and cold waves trends in the Carpathian Region from 1961 to 2010. Int. J. Climatol. 2015, 35, 4197–4209. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.; Piticar, A.; Ciupertea, A.; Florina, C. Changes in heat waves indices in Romania over the period 1961–2015. Glob. Planet. Chang. 2016, 146, 109–121. [Google Scholar] [CrossRef]
- Popov, T.; Gnjato, S.; Trbić, G.; Ivanišević, M. Recent trends in extreme temperature indices in Bosnia and Herzegovina. Carpathian J. Earth Environ. Sci. 2018, 13, 211–224. [Google Scholar] [CrossRef]
- Busuioc, A.; Dobrinescu, A.; Birsan, M.V.; Dumitrescu, A.; Orzan, A. Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int. J. Climatol. 2015, 35, 1278–1300. [Google Scholar] [CrossRef]
- Chapman, S.C.; Watkins, N.W.; Stainforth, D.A. Warming Trends in Summer Heatwaves. Geophys. Res. Lett. 2019, 46, 1634–1640. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Economou, T.; Salmon, K.; Jones, S. Historical Trends and Variability in Heat Waves in the United Kingdom. Atmosphere 2017, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Efthymiadis, D.; Goodess, C.M.; Jones, P.D. Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat. Hazards Earth Syst. Sci. 2011, 11, 2199–2214. [Google Scholar] [CrossRef]
- De Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; de Lima, J.L.M.P. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941–2007. Atmos. Res. 2013, 127, 195–209. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Piotrowski, P.; Bednorz, E. Warm spells in Northern Europe in relation to atmospheric circulation. Theor. Appl. Climatol. 2017, 128, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Kivinen, S.; Rasmus, S.; Jylhä, K.; Laapas, M. Long-term climate trends and extreme events in northern Fennoscandia (1914–2013). Climate 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Sui, C.; Yu, L.; Vihma, T. Occurrence and drivers of wintertime temperature extremes in Northern Europe during 1979–2016. Tellus Dyn. Meteorol. Oceanogr. 2020, 72, 1–19. [Google Scholar] [CrossRef]
- Chapman, S.C.; Murphy, E.J.; Stainforth, D.A.; Watkins, N.W. Trends in winter warm spells in the central England temperature record. J. Appl. Meteorol. Climatol. 2020, 59, 1069–1076. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Sulikowska, A.; Bednorz, E.; Półrolniczak, M. Atmospheric circulation conditions during winter warm spells in Central Europe. Nat. Hazards 2019, 96, 1413–1428. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. Warm winter spells in the Swiss Alps: Strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Huth, R.; James, P.; Jourdain, S.; Kreienkamp, F.; et al. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A. Summer temperature extremes in Europe: How does the definition affect the results? Theor. Appl. Climatol. 2020, 141, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Stefanon, M.; Dandrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; WMO Technical Report No. 1203; WMO: Geneva, Switzerland, 2017; pp. 1–101. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.4-13. Available online: https://CRAN.R-project.org/package=raster (accessed on 20 July 2020).
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 7 May 2021).
- Kyselý, J. Temporal fluctuations in heat waves at Prague-Klementinum, The Czech Republic, from 1901–97, and their relationships to atmospheric circulation. Int. J. Climatol. 2002, 22, 33–50. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing All Community and Business Sectors in Australia; CAWCR Technical Report No. 060; The Centre for Australian Weather and Climate Research—A partnership between CSIRO and the Bureau of Meteorology: Melbourne, Australia, 2013; p. 96. ISBN 9781922173126. Available online: https://www.cawcr.gov.au/static/technical-reports/CTR_060.pdf (accessed on 7 May 2021).
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Evans, J.S. Spatialeco. R Package Version 1.3-2. Available online: https://CRAN.R-project.org/package=spatialEco (accessed on 20 August 2020).
- Pohlert, T. Trend. R Package Version 1.1.4. Available online: https://cran.r-project.org/web/packages/trend/index.html (accessed on 20 March 2021).
- Papalexiou, S.M.; AghaKouchak, A.; Trenberth, K.E.; Foufoula-Georgiou, E. Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends. Earth’s Future 2018, 6, 71–79. [Google Scholar] [CrossRef]
- Wibig, J. Hot Days and Heat Waves in Poland in the Period 1951–2019 and the Circulation Factors Favoring the Most Extreme of Them. Atmosphere 2021, 12, 340. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; El-Kenawy, A.; Revuelto, J.; Azorin-Molina, C.; Moran-Tejeda, E.; Lorenzo-Lacruz, J.; Zabalza, J.; Vincente-Serrano, S.M. Observed trends and future projections for winter warm events in the Ebro basin, northeast Iberian Peninsula. Int. J. Climatol. 2014, 34, 49–60. [Google Scholar] [CrossRef] [Green Version]
Variable | Season | Spatial Domain | ||||
---|---|---|---|---|---|---|
SC | BR | CE | EE | IB | ||
Average areal TX trend | winter | 0.4 | 0.3 | 0.3 | 0.4 | 0.3 |
spring | 0.3 | 0.3 | 0.4 | 0.5 | 0.4 | |
summer | 0.2 | 0.3 | 0.4 | 0.3 | 0.4 | |
autumn | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | |
Average TXx trend | winter | 0.2 | 0.2 | 0.4 | 0.4 | 0.3 |
spring | 0.5 | 0.3 | 0.3 | 0.2 | 0.4 | |
summer | 0.2 | 0.5 | 0.4 | 0.3 | 0.4 | |
autumn | 0.3 | 0.2 | 0.0 | 0.1 | 0.3 |
Season | Spatial Domain | Year | EI Total (°C) | Number of ETEs | Average TI (°C) | Average TA |
---|---|---|---|---|---|---|
winter | SC | 1989/1990 | 25.5 | 35 | 1.4 | 0.38 |
BR | 2018/2019 | 32.0 | 32 | 1.4 | 0.51 | |
CE | 1989/1990 | 61.2 | 47 | 2.1 | 0.53 | |
EE | 2006/2007 | 54.4 | 49 | 2.0 | 0.47 | |
IB | 2019/2020 | 30.4 | 48 | 1.4 | 0.37 | |
spring | SC | 2007 | 44.3 | 31 | 2.1 | 0.53 |
BR | 2011 | 39.4 | 43 | 1.8 | 0.43 | |
CE | 2018 | 30.5 | 44 | 1.6 | 0.38 | |
EE | 2014 | 38.6 | 37 | 2.0 | 0.43 | |
IB | 2017 | 54.4 | 53 | 2.0 | 0.45 | |
summer | SC | 2018 | 40.2 | 42 | 1.9 | 0.42 |
BR | 1976 | 50.6 | 45 | 1.8 | 0.39 | |
CE | 2015 | 63.0 | 51 | 2.1 | 0.51 | |
EE | 2010 | 107.6 | 65 | 2.7 | 0.53 | |
IB | 2003 | 71.9 | 64 | 1.9 | 0.47 | |
autumn | SC | 2006 | 29.9 | 45 | 1.5 | 0.38 |
BR | 2011 | 26.0 | 40 | 1.3 | 0.37 | |
CE | 2018 | 28.6 | 40 | 1.8 | 0.38 | |
EE | 2010 | 38.0 | 29 | 2.1 | 0.46 | |
IB | 2017 | 31.1 | 36 | 1.6 | 0.47 |
Variable | Season | Time Period and Spatial Domain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1950–2019 | 1980–2019 | ||||||||||
SC | BR | CE | EE | IB | SC | BR | CE | EE | IB | ||
EI seasonal totals (°C per 10 yrs) | winter | 0.8 | 0.9 | 1.5 | 1.3 | 1.2 | 1.4 | 1.9 | 2.1 | 2.0 | 1.8 |
spring | 2.0 | 1.5 | 1.2 | 1.8 | 2.4 | 4.2 | 3.1 | 3.4 | 4.8 | 5.2 | |
summer | 0.7 | 1.6 | 2.4 | 1.7 | 2.7 | 1.9 | 3.3 | 6.7 | 6.1 | 5.0 | |
autumn | 0.8 | 1.0 | 1.2 | 1.2 | 0.9 | 2.3 | 1.5 | 3.0 | 3.5 | 1.8 | |
ETE frequency (days per 10 yrs) | winter | 2.0 | 2.4 | 2.2 | 2.2 | 2.4 | 2.6 | 4.0 | 3.1 | 4.1 | 4.2 |
spring | 2.6 | 2.2 | 2.4 | 2.2 | 3.4 | 4.8 | 3.9 | 5.3 | 5.3 | 7.1 | |
summer | 1.0 | 2.2 | 4.0 | 3.3 | 4.6 | 1.3 | 2.6 | 9.4 | 10.0 | 7.2 | |
autumn | 1.6 | 1.9 | 1.9 | 1.7 | 2.1 | 4.0 | 2.4 | 3.8 | 4.0 | 3.5 | |
mean TA | winter | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 |
spring | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.05 | 0.02 | |
summer | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.02 | 0.03 | 0.04 | 0.02 | |
autumn | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.04 | 0.01 | |
mean TI (°C per 10 yrs) | winter | 0.01 | 0.04 | 0.05 | 0.06 | 0.03 | 0.02 | 0.06 | 0.08 | 0.12 | 0.02 |
spring | 0.07 | 0.05 | 0.03 | 0.06 | 0.08 | 0.15 | 0.10 | 0.13 | 0.20 | 0.16 | |
summer | 0.03 | 0.12 | 0.08 | 0.04 | 0.07 | 0.12 | 0.26 | 0.13 | 0.10 | 0.14 | |
autumn | 0.02 | 0.05 | 0.05 | 0.09 | 0.05 | 0.06 | 0.08 | 0.13 | 0.18 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulikowska, A.; Wypych, A. Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe. Atmosphere 2021, 12, 612. https://doi.org/10.3390/atmos12050612
Sulikowska A, Wypych A. Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe. Atmosphere. 2021; 12(5):612. https://doi.org/10.3390/atmos12050612
Chicago/Turabian StyleSulikowska, Agnieszka, and Agnieszka Wypych. 2021. "Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe" Atmosphere 12, no. 5: 612. https://doi.org/10.3390/atmos12050612
APA StyleSulikowska, A., & Wypych, A. (2021). Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe. Atmosphere, 12(5), 612. https://doi.org/10.3390/atmos12050612