The Influence of Large-Scale Environment on the Extremely Active Tropical Cyclone Activity in November 2019 over the Western North Pacific
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Diagnostic Tools for Assessing the Relative Importance of Large-Scale Environmental Factors in TC Genesis
- (a)
- Genesis Potential Index
- (b)
- Box Difference Index
3. Diagnosis of Possible Causes and Formation Mechanisms of the Record High TC Frequency in the WNP in November 2019
3.1. The Spatio-Temporal Characteristics of TC Activities in November 2019
3.2. Large-scale Environmental Factors Related to the Active TC Genesis in November 2019
3.3. Key Factors Influencing the Highest TC Frequency in November 2019
3.4. The Role of Regional SST Changes in Promoting TC Genesis in November 2019
4. Summary and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- You, L.; Gao, J.; Lin, H.; Chen, S. Impact of the intra-seasonal oscillation on tropical cyclone genesis over the western North Pacific. Int. J. Climatol. 2019, 39, 1969–1984. [Google Scholar] [CrossRef]
- Tan, K.; Huang, P.; Liu, F.; Murakami, H.; Hsu, P.C. Simulated ENSO’s impact on tropical cyclone genesis over the western North Pacific in CMIP5 models and its changes under global warming. Int. J. Climatol. 2019, 39, 3668–3678. [Google Scholar] [CrossRef]
- Li, H.; Xu, F.; Sun, J.; Lin, Y.; Wright, J.S. Subtropical High Affects Interdecadal Variability of Tropical Cyclone Genesis in the South China Sea. J. Geophys. Res. 2019, 124, 6379–6392. [Google Scholar] [CrossRef]
- Lee, M.; Hong, C.; Tseng, W.; Hsu, H. Distinct Influences of the ENSO-Like and PMM-Like SST Anomalies on the Mean TC Genesis Location in the Western North Pacific: The 2015 Summer as an Extreme Example. J. Clim. 2018, 31, 3049–3059. [Google Scholar]
- Defforge, C.L.; Merlis, T.M. Observed warming trend in sea surface temperature at tropical cyclone genesis. Geophys. Res. Lett. 2017, 44, 1034–1040. [Google Scholar] [CrossRef]
- Weng, C.; Hsu, H. Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophys. Res. Lett. 2017, 44, 3339–3345. [Google Scholar] [CrossRef]
- Curtis, S. The Madden-Julian Oscillation: A tool for regional seasonal precipitation outlooks? Atmosphere 2017, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.S.; Vera, C.S.; Kiladis, G.N. MJO modulating the activity of the leading mode of intraseasonal variability in South America. Atmosphere 2017, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Ahrens, B.; Micheels, A.; Eronen, J.T. Strong interannual variation of the Indian summer monsoon in the Late Miocene. Clim. Dyn. 2013, 41, 135–153. [Google Scholar] [CrossRef]
- Zhang, S.; Du, L.; Wang, H.; Jiang, H. Regional sea level variation on interannual timescale in the East China Sea. J. Clim. 2014, 5, 1405–1414. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, L. Interannual variation of the Asian-Pacific oscillation. Dyn. Atmos. Ocean. 2017, 77, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Mao, J. Interdecadal variability of early summer monsoon rainfall over South China in association with the Pacific Decadal Oscillation. Int. J. Climatol. 2017, 37, 706–721. [Google Scholar] [CrossRef]
- Hua, W.; Dai, A.; Qin, M. Contributions of internal variability and external forcing to the recent Pacific decadal variations. Geophys. Res. Lett. 2018, 45, 7084–7092. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Holbrook, N.J.; O’Kane, T.J. South Pacific decadal climate variability and potential predictability. J. Clim. 2019, 32, 6051–6069. [Google Scholar] [CrossRef]
- Ramesh, N.; Cane, M.A. The predictability of tropical Pacific decadal variability: Insights from attractor reconstruction. J. Atmos. Sci. 2019, 76, 801–819. [Google Scholar] [CrossRef]
- Maue, R.N. Recent historically low global tropical cyclone activity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Zhao, H.; Raga, G.B. The influence of large-scale circulations on the extremely inactive tropical cyclone activity in 2010 over the western North Pacific. Atmósfera 2014, 27, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Rajasree, V.P.M.; Kesarkar, A.P.; Bhate, J.N.; Singh, V.; Umakanth, U.; Varma, T.H. A comparative study on the genesis of North Indian Ocean tropical cyclone Madi (2013) and Atlantic Ocean tropical cyclone Florence (2006). J. Geophys. Res. 2016, 121, 13826–13858. [Google Scholar] [CrossRef]
- Wenjie, D.; Fumin, R.; Jin, L.; Xiuqun, Y.; Guoxiong, W. Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Clim. 2011, 24, 5887–5898. [Google Scholar]
- Zhao, H.; Wu, L. Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Clim. 2012, 25, 89–98. [Google Scholar]
- Kawabata, Y.; Yamaguchi, M. Probability Ellipse for tropical cyclone track forecasts with multiple ensembles. J. Meteorol. Soc. Jpn. Ser. II 2020, 98, 821–833. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Xie, T. Comparisons of four methods for tropical cyclone center detection in a high-resolution simulation. J. Meteorol. Soc. Jpn. Ser. II 2020, 98, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Reynolds, R.W. Improved extended reconstruction of SST (1854–1997). J. Clim. 2004, 17, 2466–2477. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, USA, 3–7 May 2004. [Google Scholar]
- Zhang, M.; Zhou, L.; Chen, D.; Wang, C. A genesis potential index for Western North Pacific tropical cyclones by using oceanic parameters. J. Geophys. Res. 2016, 121, 7176–7191. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Klotzbach, P.J.; Raga, G.B.; Chen, S. Impact of the extended boreal summer intraseasonal oscillation on Western North Pacific tropical cloud cluster genesis productivity. J. Clim. 2018, 31, 9175–9191. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res. 2002, 107, 21–26. [Google Scholar] [CrossRef]
- Kitoh, A.; Murakami, H.; Wang, B.; Li, T. Projected increase in tropical cyclones near Hawaii. Nat. Clim. Chang. 2013, 3, 749–754. [Google Scholar]
- Wang, B.; Murakami, H. Dynamical genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett. 2020, 15, 114008–114010. [Google Scholar] [CrossRef]
- Xie, X.; Wang, B. Low-frequency equatorial waves in vertically shear flow. Part I: Stable waves. J. Atmos. Sci. 1996, 53, 449–467. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Stevens, D.E.; Peng, M.S.; Li, T. Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Weather Rev. 2012, 140, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, G.A.; Soden, B.J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 2007, 34, L08702. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.; Keenlyside, N.; Bader, J. Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett. 2007, 34, L01710. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chu, P.S.; Hsu, P.C.; Murakami, H. Exploratory analysis of extremely low tropical cyclone activity during the late-season of 2010 and 1998 over the western North Pacific and the South China Sea. J. Adv. Model. Earth. Syst. 2014, 6, 1141–1153. [Google Scholar] [CrossRef]
- Li, H.; Sriver, R.L. Tropical Cyclone Activity in the high-resolution community earth system model and the impact of ocean coupling. Adv. Model. Earth. Syst. 2018, 10, 165–186. [Google Scholar] [CrossRef]
- Xie, S.-P.; Yang, L.; Du, Y. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Nino. J. Clim. 2011, 24, 315–322. [Google Scholar]
- Samson, G.; Masson, S.; Lengaigne, M.; Keerthi, M.G.; Vialard, J.; Pous, S.; Madec, G.; Jourdain, N.C.; Jullien, S.; Menkes, C.; et al. The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity. Adv. Model. Earth. Syst. 2014, 6, 700–722. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Effect of Upper-Ocean Evolution on projected trends in tropical cyclone activity. J. Clim. 2015, 28, 8165–8170. [Google Scholar] [CrossRef]
- Emanuel, K.; Sobel, A. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. Adv. Model. Earth. Syst. 2013, 5, 447–458. [Google Scholar] [CrossRef]
- Stephens, S.A.; Ramsay, D.L. Extreme cyclone wave climate in the Southwest Pacific Ocean: Influence of the El Nino Southern Oscillation and projected climate change. Glob. Planet. Chang. 2014, 123, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, M.; Lin, S.J.; Yang, X.; Anderson, W.; Zhang, W.; Rosati, A.; Underwood, S.; Zeng, F. Impact of having realistic tropical cyclone frequency on ocean heat content and transport forecasts in a high-resolution coupled model. Geophys. Res. Lett. 2015, 42, 5966–5973. [Google Scholar] [CrossRef]
- McBride, J.L.; Zehr, R. Observational analysis of tropical cyclone formation: Comparison of non-developing versus developing systems. J. Atmos. Sci. 1981, 38, 1132–1151. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.S.; LI, T.; Stevens, D.E.; Fu, B. Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Weather Rev. 2012, 140, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Huu, C.T.; Sato, T. Effect of ENSO phase on the contribution of environmental variables to tropical cyclone genesis in the western North Pacific. Int. J. Climatol. 2019, 39, 2461–2473. [Google Scholar]
- Le, T.; Bae, D.H. Causal Links on interannual timescale between ENSO and the IOD in CMIP5 future simulations. Geophys. Res. Lett. 2019, 46, 2820–2828. [Google Scholar] [CrossRef]
- Kelly, K.A.; Jiang, C.L.; Cronin, M.F.; Thompson, L. The roles of intraseasonal Kelvin waves and tropical instability waves in SST variability along the equatorial Pacific in an isopycnal ocean model. J. Clim. 2009, 22, 3470–3487. [Google Scholar]
- Lestari, R.K.; Koh, T. Statistical evidence for asymmetry in ENSO-IOD interactions. Atmos. Ocean 2016, 54, 498–504. [Google Scholar] [CrossRef]
- Yuan, J.; Gao, Y.; Feng, D.; Yang, Y. The zonal dipole pattern of tropical cyclone genesis in the Indian Ocean influenced by the tropical Indo-Pacific Ocean sea surface temperature anomalies. J. Clim. 2019, 32, 6533–6549. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Liu, Q. Salient differences in tropical cyclone activity over the Western North Pacific between 1998 and 2016. J. Clim. 2017, 30, 9979–9997. [Google Scholar] [CrossRef]
- Chiang, J.C.; Viomont, D.J. Analogous Pacific and Atlantic Meridional Modes of tropical armosphere-ocean variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.C. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef] [Green Version]
- Lau, N.C.; Nath, M.J. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Clim. 2000, 13, 4287–4309. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.K.; Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 2001, 28, 327–330. [Google Scholar] [CrossRef]
- Reason, C.J.C. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett. 2001, 28, 2225–2227. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean-atmosphere dynamicals in the Indian Ocean during 1997–1998. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef]
- Wang, T.; Lu, X.; Yang, S. Impact of south Indian Ocean Dipole on tropical cyclone genesis over the South China Sea. Int. J. Climatol. 2019, 39, 101–111. [Google Scholar] [CrossRef]
- Magee, A.D.; Kidd, D.C.V. On the relationship between Indian Ocean sea surface temperature variability and tropical cyclogenesis in the southwest Pacific. Int. J. Climatol. 2018, 38, e774–e795. [Google Scholar] [CrossRef]
- Yong, L.; Ping, H.; Guanghua, C. Impacts of the combined modes of the tropical Indo-Pacific sea surface temperature anomalies on the tropical cyclone genesis over the western North Pacific. Int. J. Climatol. 2019, 39, 2108–2119. [Google Scholar]
Years with high TC frequency in November | 1979, 1981, 1983, 1986, 1990, 1991, 2007, 2019 |
Years with low TC frequency in November | 1982, 1985, 1994, 1995, 2000, 2010, 2011, 2015 |
Variable Names | BDI in the WNP (Including SCS) | BDI in the WNP (Excluding SCS) | BDI in the SCS |
---|---|---|---|
Absolute vorticity (SVOR) | +0.94 | +0.80 | +0.82 |
Vertical velocity (OMEGA) | +0.54 | +0.63 | +0.45 |
Maximum potential intensity (MPI) | +0.41 | +0.39 | +0.69 |
Meridional gradient of zonal wind (Uy) | +0.36 | +0.51 | +0.44 |
Vertical wind shear (VWS) | −0.19 | −0.48 | −0.24 |
Relative humidity (RH) | +0.08 | +0.53 | −0.21 |
Variable Names | BDI in the WNP (Including SCS) | BDI in the WNP (Excluding SCS) | BDI in the SCS |
---|---|---|---|
Vertical velocity (OMEGA) | +0.49 | +0.79 | +0.20 |
Meridional gradient of zonal wind (Uy) | +0.48 | +0.44 | +0.44 |
Maximum potential intensity (MPI) | +0.41 | +0.66 | +0.55 |
Relative humidity (RH) | +0.29 | +0.62 | −0.10 |
Absolute vorticity (SVOR) | +0.26 | +0.70 | +0.19 |
Vertical wind shear (VWS) | −0.16 | −0.60 | +0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Wang, S.; Qi, X.; Zhao, H.; Shu, Y. The Influence of Large-Scale Environment on the Extremely Active Tropical Cyclone Activity in November 2019 over the Western North Pacific. Atmosphere 2021, 12, 501. https://doi.org/10.3390/atmos12040501
Shi M, Wang S, Qi X, Zhao H, Shu Y. The Influence of Large-Scale Environment on the Extremely Active Tropical Cyclone Activity in November 2019 over the Western North Pacific. Atmosphere. 2021; 12(4):501. https://doi.org/10.3390/atmos12040501
Chicago/Turabian StyleShi, Mengying, Sulei Wang, Xiaoxu Qi, Haikun Zhao, and Yu Shu. 2021. "The Influence of Large-Scale Environment on the Extremely Active Tropical Cyclone Activity in November 2019 over the Western North Pacific" Atmosphere 12, no. 4: 501. https://doi.org/10.3390/atmos12040501
APA StyleShi, M., Wang, S., Qi, X., Zhao, H., & Shu, Y. (2021). The Influence of Large-Scale Environment on the Extremely Active Tropical Cyclone Activity in November 2019 over the Western North Pacific. Atmosphere, 12(4), 501. https://doi.org/10.3390/atmos12040501