Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020
Abstract
:1. Introduction
2. Material and Method
2.1. Satellites Images
2.2. Optical Data
- AOD: measure of the extinction of the solar beam by particles in the atmosphere.
- Ångström Exponent (AE) (440–870 nm): basically, referring to the particle size: the smaller the particle, the larger the value.
2.3. PM10 and PM2.5 Data
2.4. Visibility Data
2.5. Back Trajectories
- Considering the characteristics of SAL, the altitude of 1890 m.
- The starting locations are PR (18.43 N; −66.14 E) and BAR (13.08 N; −59.50 E).
- At the time 12 UTC (8 a.m. local time).
- The duration is 10 days (240 h).
2.6. Soundings
3. Results and Discussion
3.1. Atmospheric Context of Caribbean Zone
3.2. AOD Versus AE
- AOD ≥ 0.2 combined with AE ≤ 0.6 related to dust particles.
- AOD < 0.2 combined with AE < 2 related to marine particles (background atmosphere).
- AOD ≥ 0.15 combined with AE > 0.6 related to continental/BB particles (anthropogenic pollution).
3.3. Monthly Volume Particles Size Distribution (Vpsd) Analysis from 1996 to 2021
3.4. Surface Dust Analysis
3.4.1. PM10 Statistical Analysis
3.4.2. Relationship between PM2.5/PM10 Ratio and VPSD
- A1: ratio < 0.2;
- A2: 0.2 ≤ ratio < 0.4;
- B: 0.4 ≤ ratio < 0.6;
- C: 0.6 ≤ ratio < 0.8;
- D: ratio ≥ 0.8.
- For A1, as expected, the equation of the linear regression indicates that values vary by approximately 0.14 as increases by one unity, i.e., is equivalent to 1/7 of ;
- For A2, values vary by 0.22 as increases by one unity, i.e., is approximately equivalent to 1/4 of ;
- For B, represents almost half (≈0.50, i.e., 1/2) of ;
- For C and D (ratio ≥ 0.6), values are low contrary to . However, due to the few cases retrieved over the study period, the achieved results are not significant.
3.5. Thermodynamic Analysis of The Atmosphere
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bou Karam, D.; Flamant, C.; Knippertz, P.; Reitebuch, O.; Pelon, J.; Chong, M.; Dabas, A. Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative case-study. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2008, 134, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar]
- Prospero, J.M.; Carlson, T.N. Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res. 1972, 77, 5255–5265. [Google Scholar] [CrossRef] [Green Version]
- Van Der Does, M.; Korte, L.F.; Munday, C.I.; Brummer, G.J.A.; Stuut, J.B.W. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmos. Chem. Phys. 2016, 16, 13697–13710. [Google Scholar] [CrossRef] [Green Version]
- Gyan, K.; Henry, W.; Lacaille, S.; Laloo, A.; Lamsee-Ebanks, C.; McKay, S.; Antoine, R.; Monteil, M.A. African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int. J. Biometeorol. 2005, 49, 371–376. [Google Scholar] [CrossRef]
- Ramírez-Romero, C.; Jaramillo, A.; Córdoba, M.F.; Raga, G.B.; Miranda, J.; Alvarez-Ospina, H.; Rosas, D.; Amador, T.; Kim, J.S.; Yakobi-Hancock, J.; et al. African dust particles over the western Caribbean–Part I: Impact on air quality over the Yucatán Peninsula. Atmos. Chem. Phys. 2021, 21, 239–253. [Google Scholar] [CrossRef]
- Gurung, A.; Son, J.Y.; Bell, M.L. Particulate matter and risk of hospital admission in the Kathmandu Valley, Nepal: A case-crossover study. Am. J. Epidemiol. 2017, 186, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Cui, L.L.; Liu, S.Q.; Yin, X.X.; Li, H.C. Ambient air pollution, smog episodes and mortality in Jinan, China. Sci. Rep. 2017, 7, 1–8. [Google Scholar]
- Momtazan, M.; Geravandi, S.; Rastegarimehr, B.; Valipour, A.; Ranjbarzadeh, A.; Yari, A.R.; Dobaradaran, S.; Bostan, H.; Farhadi, M.; Darabi, F.; et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 2019, 38, 290–297. [Google Scholar] [CrossRef]
- Feng, W.; Li, H.; Wang, S.; Van Halm-Lutterodt, N.; An, J.; Liu, Y.; Liu, M.; Wang, X.; Guo, X. Short-term PM10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. Sci. Total Environ. 2019, 657, 213–221. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, A.; Báez-Ferrer, N.; Abreu-González, P.; Rodríguez, S.; Díaz, R.; Avanzas, P.; Hernández-Vaquero, D. Impact of Desert Dust Events on the Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Tegen, I.; Lacis, A.A.; Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 1996, 380, 419. [Google Scholar] [CrossRef]
- Miller, R.; Tegen, I. Climate response to soil dust aerosols. J. Clim. 1998, 11, 3247–3267. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Schepanski, K. Transport of mineral dust and its impact on climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Plocoste, T.; Calif, R.; Euphrasie-Clotilde, L.; Brute, F.N. Investigation of local correlations between particulate matter (PM10) and air temperature in the Caribbean basin using Ensemble Empirical Mode Decomposition. Atmos. Pollut. Res. 2020, 11, 1692–1704. [Google Scholar] [CrossRef]
- Plocoste, T.; Pavón-Domínguez, P. Temporal scaling study of particulate matter (PM10) and solar radiation influences on air temperature in the Caribbean basin using a 3D joint multifractal analysis. Atmos. Environ. 2020, 222, 117115. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2004, 85, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; McFarquhar, G.M.; Saleeby, S.M.; Cotton, W.R. Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Collard, F.X.; Molinié, J.; Jeannot, A. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Glob. Biogeochem. Cycles 2014, 28, 757–773. [Google Scholar] [CrossRef]
- Euphrasie-Clotilde, L.; Plocoste, T.; Feuillard, T.; Velasco-Merino, C.; Mateos, D.; Toledano, C.; Brute, F.N.; Bassette, C.; Gobinddass, M. Assessment of a new detection threshold for PM10 concentrations linked to African dust events in the Caribbean Basin. Atmos. Environ. 2020, 224, 117354. [Google Scholar] [CrossRef]
- Plocoste, T.; Carmona-Cabezas, R.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E.; Calif, R. Multifractal characterisation of particulate matter (PM10) time series in the Caribbean basin using visibility graphs. Atmos. Pollut. Res. 2021, 12, 100–110. [Google Scholar] [CrossRef]
- Karyampudi, V.M.; Palm, S.P.; Reagen, J.A.; Fang, H.; Grant, W.B.; Hoff, R.M.; Moulin, C.; Pierce, H.F.; Torres, O.; Browell, E.V.; et al. Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Am. Meteorol. Soc. 1999, 80, 1045–1076. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Lamb, P.J. African droughts and dust transport to the Caribbean: Climate change implications. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Cuesta, J.; Weston, M.; Evan, A.; Temimi, M. The Atmospheric Drivers of the Major Saharan Dust Storm in June 2020. Geophys. Res. Lett. 2020, 47, e2020GL090102. [Google Scholar] [CrossRef]
- Remini, B. Awesome, the dust of the sahara in the sky of the america continent. Godzilla, the biggest dust storm in half a century. LARHYSS J. 2020, 43, 139–167. [Google Scholar]
- Wu, Y.; Graaf, M.D.; Menenti, M. Improved MODIS Dark Target aerosol optical depth algorithm over land: Angular effect correction. Atmos. Meas. Tech. 2016, 9, 5575–5589. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Lapyonok, T.; Sinyuk, A.; Mishchenko, M.; Yang, P.; Slutsker, I. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 2002, 29, 54-1–54-4. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Smirnov, A.; Holben, B.; King, M.; Kaufman, Y.; Eck, T.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Ozer, P.; Laghdaf, M.B.O.M.; Lemine, S.O.M.; Gassani, J. Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility data. Water Air Soil Pollut. 2007, 178, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Dunion, J.P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Clim. 2011, 24, 893–908. [Google Scholar] [CrossRef]
- Gläser, G.; Wernli, H.; Kerkweg, A.; Teubler, F. The transatlantic dust transport from North Africa to the Americas—Its characteristics and source regions. J. Geophys. Res. Atmos. 2015, 120, 11–231. [Google Scholar] [CrossRef] [Green Version]
- García, M.I.; Rodriguez, S.; Alastuey, A. Impact of North America on the aerosol composition in the North Atlantic free troposphere. Atmos. Chem. Phys. 2017, 17, 7387. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Sana, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Plocoste, T.; Carmona-Cabezas, R.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E. Background PM10 atmosphere: In the seek of a multifractal characterization using complex networks. J. Aerosol Sci. 2021, 155, 105777. [Google Scholar] [CrossRef]
- Carlson, T.N.; Prospero, J.M. The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteorol. Climatol. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Zuidema, P.; Alvarez, C.; Kramer, S.J.; Custals, L.; Izaguirre, M.; Sealy, P.; Prospero, J.M.; Blades, E. Is summer African dust arriving earlier to Barbados? The updated long-term in situ dust mass concentration time series from Ragged Point, Barbados, and Miami, Florida. Bull. Am. Meteorol. Soc. 2019, 100, 1981–1986. [Google Scholar] [CrossRef]
- Clergue, C.; Dellinger, M.; Buss, H.; Gaillardet, J.; Benedetti, M.; Dessert, C. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chem. Geol. 2015, 414, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Rastelli, E.; Corinaldesi, C.; Dell’Anno, A.; Martire, M.L.; Greco, S.; Facchini, M.C.; Rinaldi, M.; O’Dowd, C.; Ceburnis, D.; Danovaro, R. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: An experimental approach. Sci. Rep. 2017, 7, 11475. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.; Savoie, D.; Prospero, J.; Kaufman, Y.; Tanre, D.; Eck, T.; Slutsker, I. Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados. Geophys. Res. Lett. 2000, 27, 1643–1646. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Merino, C.; Mateos, D.; Toledano, C.; Prospero, J.M.; Molinie, J.; Euphrasie-Clotilde, L.; González, R.; Cachorro, V.E.; Calle, A.; Frutos, A.M.D. Impact of long-range transport over the Atlantic Ocean on Saharan dust optical and microphysical properties based on AERONET data. Atmos. Chem. Phys. 2018, 18, 9411–9424. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.N.; Seo, Y.C.; Lee, J.H.; Hwang, K.W.; Yoo, J.I.; Sok, C.H.; Kim, S.H. Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments. Atmos. Environ. 2007, 41, 1053–1063. [Google Scholar] [CrossRef]
- Toledano, C.; Cachorro, V.; Berjon, A.; De Frutos, A.; Sorribas, M.; De la Morena, B.; Goloub, P. Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 795–807. [Google Scholar] [CrossRef]
- Plocoste, T.; Calif, R.; Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in Caribbean region. Atmos. Environ. 2017, 169, 22–35. [Google Scholar] [CrossRef]
- Plocoste, T.; Dorville, J.F.; Monjoly, S.; Jacoby-Koaly, S.; André, M. Assessment of Nitrogen Oxides and Ground-Level Ozone behavior in a dense air quality station network: Case study in the Lesser Antilles Arc. J. Air Waste Manag. Assoc. 2018, 68, 1278–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plocoste, T.; Calif, R. Spectral Observations of PM10 Fluctuations in the Hilbert Space. In Functional Calculus; IntechOpen: Rijeka, Croatia, 2019; pp. 1–13. [Google Scholar]
- Sellegri, K.; Gourdeau, J.; Putaud, J.P.; Despiau, S. Chemical composition of marine aerosol in a Mediterranean coastal zone during the FETCH experiment. J. Geophys. Res. Atmos. 2001, 106, 12023–12037. [Google Scholar] [CrossRef] [Green Version]
- Román, R.; Benavent-Oltra, J.A.; Casquero-Vera, J.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; et al. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmos. Res. 2018, 204, 161–177. [Google Scholar] [CrossRef] [Green Version]
- D’Almeida, G.A. A model for Saharan dust transport. J. Appl. Meteorol. Climatol. 1986, 25, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.; Legrand, M. Dust variability over northern Africa and rainfall in the Sahel. In Linking Climate Change to Land Surface Change; Springer: New York, NY, USA, 2000; pp. 1–25. [Google Scholar]
- Middleton, N.; Goudie, A. Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr. 2001, 26, 165–181. [Google Scholar] [CrossRef]
- Chiapello, I.; Moulin, C. TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997). Geophys. Res. Lett. 2002, 29, 17-1–17-4. [Google Scholar] [CrossRef]
- Koren, I.; Joseph, J.H.; Israelevich, P. Detection of dust plumes and their sources in northeastern Libya. Can. J. Remote Sens. 2003, 29, 792–796. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 2009, 9, 1173–1189. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, C.; Prospero, J.M. African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Formenti, P.; Schütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef] [Green Version]
- Burgos, M.A.; Mateos, D.; Cachorro, V.E.; Toledano, C.; de Frutos, A. Aerosol properties of mineral dust and its mixtures in a regional background of north-central Iberian Peninsula. Sci. Total Environ. 2016, 572, 1005–1019. [Google Scholar] [CrossRef] [Green Version]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A.; Reid, J.S.; Maring, H.; Savoie, D.; Holben, B.N.; Livingston, J.M.; Russell, P.B.; Yang, S.K. GOES 8 retrieval of dust aerosol optical thickness over the Atlantic Ocean during PRIDE. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Yue, S. Correlating aerosol optical thickness measurement with PM10 mass concentration in Wuhan area. In Proceedings of the 2011 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Beijing, China, 6–9 November 2011; International Society for Optics and Photonics: San Diego, CA, USA, 2011; Volume 8201, p. 82010D. [Google Scholar]
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 108, 1–44. [Google Scholar]
- Plocoste, T.; Calif, R.; Euphrasie-Clotilde, L.; Brute, F. The statistical behavior of PM10 events over guadeloupean archipelago: Stationarity, modelling and extreme events. Atmos. Res. 2020, 241, 104956. [Google Scholar] [CrossRef]
- Knippertz, P.; Todd, M.C. The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; Technical Report; WHO Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Petit, R.; Legrand, M.; Jankowiak, I.; Molinié, J.; Asselin de Beauville, C.; Marion, G.; Mansot, J. Transport of Saharan dust over the Caribbean Islands: Study of an event. J. Geophys. Res. Atmos. 2005, 110, D18S09. [Google Scholar] [CrossRef]
- Evagelopoulos, V.; Zoras, S.; Triantafyllou, A.; Albanis, T. PM10-PM2. 5 time series and fractal analysis. Glob. NEST J. 2006, 8, 234–240. [Google Scholar]
- Koçak, M.; Mihalopoulos, N.; Kubilay, N. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmos. Environ. 2007, 41, 3806–3818. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Zhang, B.; Zhao, S.; Yuan, M.; Gu, Y.; Liu, J.; Tang, X. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual. Res. 2017, 17, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C.R.; Cots, N.; Massagué, G.; Puig, O. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Zapata, C.; Cano, N.; Ramirez, M. PM2.5/PM10 relationship in the Metropolitan Area of Valle de Aburrá, Colombia. Air Pollut. XXIV 2016, 207, 111. [Google Scholar]
- Jury, M.R.; Jiménez, A.T.N. Tropical Atlantic dust and the zonal circulation. Theor. Appl. Climatol. 2021, 143, 901–913. [Google Scholar] [CrossRef]
- Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T. African dust and the demise of Caribbean coral reefs. Geophys. Res. Lett. 2000, 27, 3029–3032. [Google Scholar] [CrossRef] [Green Version]
- Colarco, P.; Toon, O.; Holben, B. Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Reid, J.S.; Kinney, J.E.; Westphal, D.L.; Holben, B.N.; Welton, E.J.; Tsay, S.C.; Eleuterio, D.P.; Campbell, J.R.; Christopher, S.A.; Colarco, P.; et al. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Cavalieri, O.; Cairo, F.; Fierli, F.; Donfrancesco, G.D.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; et al. Variability of aerosol vertical distribution in the Sahel. Atmos. Chem. Phys. 2010, 10, 12005–12023. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.M.; Prospero, J.M.; Zhang, C. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. J. Clim. 2012, 25, 6862–6879. [Google Scholar] [CrossRef]
Sites | Coordinates (N, E) | Time Period | AERONET Daily Data (N) |
---|---|---|---|
Caribbean | |||
BAR (Barbados) | (13.149, −59.624) | 1996–2000 | 695 |
GPE (Pointe-à-Pitre) | (16.225, −61.528) | 1997–2020 | 2601 |
PR (Cap San Juan) | (18.384, −65.620) | 2005–2021 | 2182 |
PR (Rio Piedras) | (18.402, −66.051) | 2004 | 56 |
BAR (Ragged Point) | (13.165, −59.432) | 2007–2021 | 2623 |
BAR (Sal Trace) | (13.149, −59.625) | 2013–2014 | 77 |
PR (Neo Guan) | (17.970, −66.869) | 2017–2021 | 810 |
African | |||
Capo Verde | (16.733, −22.935) | 1994–2021 | 3176 |
Dakar | (14.394, −16.959) | 1994–2020 | 4118 |
Air Quality Network | Station | Database | Coordinates (N, E) | Time Period | Daily Data (N) |
---|---|---|---|---|---|
Air Now (PR) | Catano | / | 18.431, −66.142 | 2000–2020 | 1668 |
Gwad’Air (GPE) | Pointe-à-Pitre | 16.242, −61.541 | June 2020 | 30 |
Location | Dust Aerosols | Marine Aerosols | Continental/BB Aerosols |
---|---|---|---|
AOD ≥ 0.2 | AOD ≤ 0.15 | AOD ≥ 0.15 | |
AE ≤ 0.6 | AE < 2 | AE > 0.6 | |
Caribbean sites | 22.11% | 64.89% | 3.47% |
June | () | () | S | K | (Days) | (Days) |
---|---|---|---|---|---|---|
2006 (N = 25) | 45.4 | 22.2 | 1.0 | 3.1 | 12 | 6 |
2007 (N = 26) | 35.9 | 16.0 | 0.6 | 2.1 | 11 | 4 |
2008 (N = 30) | 32.9 | 14.0 | 0.5 | 2.5 | 13 | 2 |
2009 (N = 30) | 34.9 | 33.8 | 2.0 | 5.7 | 8 | 5 |
2010 (N = 25) | 42.3 | 39.2 | 1.7 | 4.9 | 9 | 6 |
2011 (N = 30) | 30.4 | 13.6 | 1.0 | 3.4 | 7 | 4 |
2012 (N = 30) | 49.5 | 21.6 | 0.7 | 3.0 | 21 | 14 |
2013 (N = 25) | 31.8 | 11.5 | 0.6 | 2.7 | 9 | 2 |
2014 (N = 30) | 38.1 | 19.1 | 0.6 | 2.1 | 14 | 9 |
2015 (N = 26) | 45.1 | 22.0 | 0.4 | 2.2 | 16 | 10 |
2016 (N = 28) | 29.2 | 11.6 | 1.4 | 4.9 | 5 | 2 |
2017 (N = 27) | 23.7 | 7.3 | 0.6 | 2.2 | 5 | 0 |
2018 (N = 26) | 40.3 | 22.4 | 0.9 | 3.0 | 13 | 7 |
2019 (N = 26) | 35.7 | 21.6 | 0.8 | 3.2 | 12 | 7 |
2020 (N = 29) | 63.3 | 85.4 | 3.6 | 16.8 | 14 | 9 |
Ratio Group | Dust (%) | Marine (%) | Continental/BB (%) |
---|---|---|---|
A1 | 23.18 | 16.71 | 0.27 |
A2 | 28.30 | 28.03 | 1.35 |
B | 0.27 | 1.62 | 0.27 |
Total | 51.75 | 46.36 | 1.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Euphrasie-Clotilde, L.; Plocoste, T.; Brute, F.-N. Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. Atmosphere 2021, 12, 502. https://doi.org/10.3390/atmos12040502
Euphrasie-Clotilde L, Plocoste T, Brute F-N. Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. Atmosphere. 2021; 12(4):502. https://doi.org/10.3390/atmos12040502
Chicago/Turabian StyleEuphrasie-Clotilde, Lovely, Thomas Plocoste, and France-Nor Brute. 2021. "Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020" Atmosphere 12, no. 4: 502. https://doi.org/10.3390/atmos12040502
APA StyleEuphrasie-Clotilde, L., Plocoste, T., & Brute, F. -N. (2021). Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. Atmosphere, 12(4), 502. https://doi.org/10.3390/atmos12040502