Spatial Regression Modeling Approach for Assessing the Spatial Variation of Air Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air-Monitoring Stations
2.3. Data Analysis
2.4. Methods
2.4.1. Spatial Measures
2.4.2. Spatial Regression Model
3. Results and Discussion
3.1. Spatial Distribution of Air Pollutants
3.2. Verification of the Spatial Autocorrelation
3.3. Descriptive Statistical Analysis
3.4. Results of the Spatial Regression Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Classification | PM10 | PM2.5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ordinary Least Square (OLS) | Spatial Lag Model (SLM) | Spatial Error Model (SEM) | Ordinary Least Square (OLS) | Spatial Lag Model (SLM) | Spatial Error Model (SEM) | ||||||||
Coef. | t | Coef. | z | Coef. | z | Coef. | t | Coef. | z | Coef. | z | ||
Socioeconomic characteristics | Children under 15 | −0.072 | −0.693 | 0.008 | 0.257 | 0.012 | 0.334 | −0.004 | −0.074 | 0.007 | 0.300 | 0.002 | 0.081 |
Elderly above 65 | −0.076 | −0.728 | 0.005 | 0.165 | 0.039 | 1.011 | −0.058 | −0.876 | 0.008 | 0.348 | 0.020 | 0.713 | |
National basic livelihood security recipient | −0.041 | −0.485 | 0.011 | 0.431 | 0.024 | 0.866 | −0.056 | −1.044 | 0.005 | 0.253 | 0.010 | 0.518 | |
Road characteristics | Neighborhood street | 0.023 | 0.812 | 0.002 | 0.230 | 0.001 | 0.127 | 0.029 | 1.670 | 0.006 | 0.989 | 0.002 | 0.348 |
Main road | 0.074 ** | 2.724 | 0.004 | 0.530 | 0.002 | 0.259 | 0.043 * | 2.514 | 0.005 | 0.818 | 0.000 | 0.072 | |
Intersection | 0.154 | 0.344 | −0.099 | −0.725 | −0.131 | −0.693 | −0.668 * | −2.372 | −0.197 | −1.902 | −0.254 | −1.838 | |
Bus stop | 0.246 | 0.415 | 0.073 | 0.404 | 0.119 | 0.644 | 0.613 | 1.638 | 0.278 * | 2.0247 | 0.255 | 1.882 | |
Land use characteristics | Housing area | −0.016 | −0.748 | −0.013 * | −2.017 | −0.007 | −0.988 | −0.016 | −1.172 | −0.004 | −0.881 | 0.001 | 0.200 |
Commercial area | −0.048 | −1.676 | −0.017 | −1.941 | −0.009 | −0.807 | −0.049 * * | −2.712 | −0.015 * | −2.323 | −0.007 | −0.930 | |
Industrial area | 0.997 | 1.008 | 0.504 | 1.661 | 0.581 | 1.518 | 0.959 | 1.540 | 0.453 * | 1.984 | 0.559 * | 1.995 | |
Park area | −0.651 * | −2.272 | −0.160 | −1.810 | −0.165 | −1.766 | −0.383 * | −2.122 | −0.132 * | −2.001 | −0.093 | −1.361 | |
Mixed use | 1.688 | 0.635 | 0.503 | 0.617 | 0.415 | 0.548 | −1.026 | −0.613 | −0.220 | −0.359 | −0.153 | −0.276 | |
Development density characteristics | Total used surface of residential buildings | −0.000 * | −2.280 | −0.000 * | −2.229 | −0.000 | −1.073 | −0.000 * | −2.434 | −0.000 | −1.176 | −0.000 | −0.345 |
Total used surface of commercial buildings | 0.000 | 0.700 | 0.000 | 0.419 | 0.000 | 0.501 | 0.000 | 0.632 | 0.000 | 0.563 | 0.000 | 0.457 | |
Single−family housing | 1.242 ** | 2.973 | 0.381 ** | 2.963 | 0.193 | 1.626 | 0.633 * | 2.406 | 0.138 | 1.430 | 0.029 | 0.337 | |
Multifamily housing | 0.156 | 0.349 | 0.034 | 0.251 | 0.128 | 0.847 | 0.302 | 1.073 | 0.066 | 0.646 | 0.132 | 1.189 | |
Rho | 0.959 ** | 49.953 | 0.966 ** | 54.931 | |||||||||
Lambda (λ) | 0.983 ** | 93.982 | 0.978 ** | 77.821 | |||||||||
Robust LM lag | 65.344 ** | 50.356 ** | |||||||||||
Robust LM error | 0.160 | 1.985 | |||||||||||
Log likelihood | −348.35 | −214.80 | −221.66 | −284.10 | −175.92 | −177.67 | |||||||
N | 139 | 139 | 139 | 139 | 139 | 139 | |||||||
R2 | 0.426 | 0.938 | 0.934 | 0.260 | 0.886 | 0.886 | |||||||
Akaike information criterion (AIC) | 730.71 | 465.60 | 477.32 | 602.21 | 387.85 | 389.35 | |||||||
Schwarz criterion (SC) | 780.59 | 518.42 | 527.21 | 652.10 | 440.67 | 439.24 |
Classification | NO2 | CO | SO2 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | |||||||||||||
Coef. | t | Coef. | z | Coef. | z | Coef. | z | Coef. | z | Coef. | z | Coef. | z | Coef. | z | Coef. | z | ||||
Socioeconomic characteristics | Children under 15 | −0.000 | −0.923 | 0.000 | 0.093 | 0.000 | 0.015 | −0.000 | −0.469 | 0.000 | 0.520 | 0.000 | 0.617 | 0.000 ** | 2.745 | 0.000 | 1.640 | 0.000 | 0.440 | ||
Elderly above 65 | −0.000 | −0.161 | −0.000 | −0.406 | −0.000 | −0.144 | −0.000 | −0.665 | −0.000 | −0.206 | 0.000 | 0.461 | 0.000 ** | 2.684 | 0.000 | 1.315 | 0.000 | 0.739 | |||
National basic livelihood security recipient | −0.000 | −0.706 | −0.000 | −0.264 | −0.000 | −0.231 | −0.000 | −0.996 | 0.000 | 0.029 | 0.000 | 0.554 | 0.000 | 0.101 | 0.000 | 1.310 | 0.000 | 1.829 | |||
Road characteristics | Neighborhood street | 0.000 | 1.556 | 0.000 | 0.766 | 0.000 | 0.692 | 0.000 * | 2.546 | 0.000 | 1.705 | 0.000 | 1.431 | 0.000 ** | 3.281 | 0.000 | 1.645 | 0.000 | 0.237 | ||
Main road | 0.000 * | 2.562 | 0.000 | 0.551 | 0.000 | 0.407 | 0.000 ** | 3.465 | 0.000 | 1.509 | 0.000 | 1.008 | 0.000 ** | 4.780 | 0.000 * | 2.214 | 0.000 | 0.790 | |||
Intersection | −0.000 | −0.346 | −0.000 | −1.057 | −0.000 | −0.784 | −0.000 | −0.042 | −0.001 | −1.314 | −0.002 | −1.373 | 0.000 | 0.188 | −0.000 | −0.949 | −0.000 | −0.929 | |||
Bus stop | 0.000 | 0.389 | −0.000 | −0.225 | −0.000 | −0.150 | 0.005 | 1.181 | 0.002 | 0.167 | 0.002 | 1.545 | 0.000 * | 2.113 | 0.000 | 1.865 | 0.000 | 1.240 | |||
Land use characteristics | Housing area | −0.000 | −0.225 | −0.000 | −1.422 | −0.000 | −0.737 | −0.000 | −0.219 | −0.000 | −0.857 | 0.000 | 0.461 | −0.000 | −1.391 | −0.000 * | −2.220 | −0.000 | −1.283 | ||
Commercial area | −0.000 | −0.577 | −0.000 | −0.864 | −0.000 | −0.529 | −0.000 | −0.449 | −0.000 | 0.343 | −0.000 | −0.012 | −0.000 | −0.939 | −0.000 | −1.568 | −0.000 | −0.902 | |||
Industrial area | 0.001 | 1.951 | 0.000 | 1.666 | 0.000 | 0.913 | 0.015 * | 2.035 | 0.006 * | 2.196 | 0.005 | 1.542 | 0.000 | 0.931 | 0.000 | 1.739 | 0.000 * | 2.032 | |||
Park area | −0.000 | −1.530 | −0.000 | −1.034 | −0.000 | −0.844 | −0.004 * | −2.009 | −0.001 | −1.289 | −0.000 | −0.477 | −0.000 * | −2.397 | −0.000 | −1.933 | −0.000 * | −2.543 | |||
Mixed use | 0.001 | 0.660 | 0.000 | 0.449 | 0.000 | 0.215 | 0.021 | 1.086 | 0.007 | 0.920 | 0.004 | 0.609 | 0.000 | 0.407 | 0.000 | 0.452 | 0.000 | 0.317 | |||
Development density characteristics | Total used surface of residential buildings | −0.000 | −1.891 | −0.000 * | −2.199 | −0.000 | −1.951 | −0.000 | −1.875 | −0.000 * | −2.067 | −0.000 | −1.867 | −0.000 * | −2.568 | −0.000 | −1.906 | −0.000 | −0.950 | ||
Total used surface of commercial buildings | 0.000 | 0.572 | −0.000 | −0.000 | 0.000 | 0.222 | 0.000 | 0.625 | 0.000 | 0.016 | 0.000 | 0.206 | 0.000 * | 2.383 | 0.000 | 1.615 | 0.000 | 1.206 | |||
Single−family housing | 0.000 * | 2.470 | 0.000 ** | 2.950 | 0.000 * | 2.241 | 0.005 | 1.617 | 0.002 | 1.920 | 0.001 | 1.528 | 0.000 ** | 3.348 | 0.000 ** | 3.287 | 0.000 * | 2.430 | |||
Multifamily housing | 0.000 | 1.068 | 0.000 | 0.203 | 0.000 | 0.059 | 0.002 | 0.779 | 0.000 | 0.501 | 0.001 | 0.986 | 0.000 | 0.827 | −0.000 | −0.268 | −0.000 | −0.193 | |||
Rho | 0.936 ** | 36.302 | 0.932 ** | 35.142 | 0.915 ** | 32.374 | |||||||||||||||
Lambda (λ) | 0.964 ** | 51.457 | 0.964 ** | 51.898 | 0.980 ** | 84.458 | |||||||||||||||
Robust LM lag | 49.563 ** | 49.575 ** | 62.952 ** | ||||||||||||||||||
Robust LM error | 0.148 | 0.256 | 0.154 | ||||||||||||||||||
Log likelihood | 688.32 | 785.33 | 779.46 | 329.79 | 426.75 | 423.94 | 964.62 | 1061.94 | 1054.55 | ||||||||||||
N | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | ||||||||||||
R2 | 0.403 | 0.888 | 0.882 | 0.368 | 0.880 | 0.881 | 0.610 | 0.925 | 0.924 | ||||||||||||
Akaike information criterion (AIC) | −1342.64 | −1534.66 | −1524.93 | −625.58 | −817.51 | −813.88 | −1895.24 | −2087.88 | −2075.11 | ||||||||||||
Schwarz criterion (SC) | −1292.76 | −1481.84 | −1475.04 | −575.69 | −764.69 | −763.99 | −1845.35 | −2035.06 | −2025.22 |
References
- Kim, D.; Chen, Z.; Zhou, L.-F.; Huang, S.-X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 75–94. [Google Scholar] [CrossRef] [PubMed]
- The WMO GAW Urban Research Meteorology and Environment Project (GURME). Available online: https://library.wmo.int/doc_num.php?explnum_id=3395 (accessed on 10 June 2020).
- Liu, S.V.; Chen, F.; Xue, J. A meta-analysis of selected near-road air pollutants based on concentration decay rates. Heliyon 2019, 5, e02236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewling, L.; Bogawski, P.; Kryza, M.; Magyar, D.; Šikoparija, B.; Skjøth, C.A.; Udvardy, O.; Werner, M.; Smith, M. Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environ. Pollut. 2019, 254, 112948. [Google Scholar] [CrossRef] [PubMed]
- Akopov, A.S.; Beklaryan, L.A.; Beklaryan, G.L. Data on air pollutants and greenery in the city of Yerevan, Armenia. Data Brief 2019, 25, 104028. [Google Scholar] [CrossRef]
- Kumar, D. Evolving Differential evolution method with random forest for prediction of Air Pollution. Procedia Comput. Sci. 2018, 132, 824–833. [Google Scholar] [CrossRef]
- Chen, W.; Tang, H.; Zhao, H. Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing. Atmos. Environ. 2015, 119, 21–34. [Google Scholar] [CrossRef]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; van der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef] [Green Version]
- Potoglou, D.; Kanaroglou, P.S. Carbon monoxide emissions from passenger vehicles: Predictive mapping with an application to Hamilton, Canada. Transp. Res. D Transp. Environ. 2005, 10, 97–109. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: http://www.who.int/airpollution/ambient/en/ (accessed on 11 October 2019).
- Ko, D.; Park, S. A Study on the Influences of Neighborhood Built Environment on Air Pollutants in Seoul. J. Korean Reg. Dev. Assoc. 2019, 31, 123–140. (In Korean) [Google Scholar]
- Kim, H.; Jun, M. Analysis on Relationship between Urban Development Characteristics and Air Pollution level. J. Korea Plan. Assoc. 2014, 49, 151–167. (In Korean) [Google Scholar] [CrossRef]
- Lee, Y.; Sohn, D. An Analysis of the Relationships between the Characteristics of Urban Physical Environment and Air Pollution in Seoul. J. Urban Des. Inst. Korea 2014, 16, 5–19. (In Korean) [Google Scholar]
- Kim, J.B.; Kim, C.H.; Lee, S.-B.; Kim, K.H.; Yoo, J.-W.; Bae, G.-N. Characteristics of Spatial and Temporal Air Pollution on Bicycle Way along the Han River in Seoul, Korea. J. Korean Soc. Atmos. Environ. 2019, 35, 184–194. (In Korean) [Google Scholar] [CrossRef]
- Baik, Y.-J.; Kim, D.-W.; Kwon, H.-Y.; Kim, Y.; Kim, S.-Y. Impact of the Exclusive Median Bus Lane System on Air Pollution Concentrations in Seoul, Korea. J. Korean Soc. Atmos. Environ. 2018, 34, 542–553. (In Korean) [Google Scholar] [CrossRef]
- Krämer, U.; Herder, C.; Sugiri, D.; Strassburger, K.; Schikowski, T.; Ranft, U.; Rathmann, W. Traffic-related air pollution and incident type 2 diabetes: Results from the SALIA cohort study. Environ. Health Perspect. 2010, 118, 1273–1279. [Google Scholar] [CrossRef] [Green Version]
- Puett, R.C.; Hart, J.E.; Schwartz, J.; Hu, F.B.; Liese, A.D.; Laden, F. Are particulate matter exposures associated with risk of type 2 diabetes? Environ. Health Perspect. 2011, 119, 384–389. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/airpollution/ambient/health-impacts/en/ (accessed on 12 October 2019).
- Organization for Economic Cooperation and Development (OECD). The Economic Consequences of Outdoor Air Pollution; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Oh, I.; Bang, J.-H.; Kim, S.; Kim, E.; Hwang, M.-K.; Kim, Y. Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region. J. Korean Soc. Atmos. Environ. 2016, 32, 394–407. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kang, J.; Bae, H.; Yoon, D. Vulnerability Assessment of the Air Pollution Using Entropy Weights: Focused on Ozone. J. KARG 2015, 21, 751–763. (In Korean) [Google Scholar]
- Wu, H.; Reis, S.; Lin, C.; Heal, M.R. Effect of monitoring network design on land use regression models for estimating residential NO2 concentration. Atmos. Environ. 2017, 149, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Sarti, E.; Pasti, L.; Scaroni, I.; Casali, P.; Cavazzini, A.; Rossi, M. Determination of n-alkanes, PAHs and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator. Atmos. Environ. 2017, 149, 12–23. [Google Scholar] [CrossRef]
- Muttoo, S.; Ramsay, L.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R.N. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total Environ. 2018, 610–611, 1439–1447. [Google Scholar] [CrossRef]
- Rivera, M.; Basagaña, X.; Aguilera, I.; Agis, D.; Bouso, L.; Foraster, M.; Medina-Ramón, M.; Pey, J.; Künzli, N.; Hoek, G. Spatial distribution of ultrafine particles in urban settings: A land use regression model. Atmos. Environ. 2012, 54, 657–666. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z.-R. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníková, T.; Gu, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Guldmann, J.-M. Land-use regression panel models of NO2 concentrations in Seoul, Korea. Atmos. Environ. 2015, 107, 364–373. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Ryswyk, K.; Kulka, R.; Sun, L.; Wallace, L.; Joseph, L. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: The urban transportation exposure study. Environ. Sci. Technol. 2015, 49, 597–605. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Ryswyk, K.; Goldstein, A.; Shekarrizfard, M.; Hatzopoulou, M. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model. Environ. Pollut. 2016, 208, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Farrell, W.; Goldberg, M.; Joseph, L.; Hatzopoulou, M. Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environ. Res. 2014, 132, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Cordioli, M.; Pironi, C.; De Munari, E.; Marmiroli, N.; Lauriola, P.; Ranzi, A. Combining land use regression models and fixed site monitoring to reconstruct spatiotemporal variability of NO2 concentrations over a wide geographical area. Sci. Total Environ. 2017, 574, 1075–1084. [Google Scholar] [CrossRef]
- Sabaliauskas, K.; Jeong, C.-H.; Yao, X.; Reali, C.; Sun, T.; Evans, G.J. Development of a land-use regression model for ultrafine particles in Toronto, Canada. Atmos. Environ. 2015, 110, 84–92. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Blangiardo, M.; Gulliver, J. Using building heights and street configuration to enhance intraurban PM10, NOx, and NO2 Land use regression models. Environ. Sci. Technol. 2013, 47, 11643–11650. [Google Scholar] [CrossRef] [PubMed]
- Bertazzon, S.; Johnson, M.; Eccles, K.; Kaplan, G.G. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat. Spatiotemporal Epidemiol. 2015, 14–15, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Eeftens, M.; Meier, R.; Schindler, C.; Aguilera, I.; Phuleria, H.; Ineichen, A.; Davey, M.; Ducret-Stich, R.; Keidel, D.; Probst-Hensch, N.; et al. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions. Environ. Health 2016, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-C.; Chan, C.-C.; Cho, C.-W.; Lin, H.-I.; Lee, J.-H.; Wu, C.-F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yeganeh, B.; Clifford, S.; Knibbs, L.D.; Morawska, L. Development of a land use regression model for daily NO2 and NOx concentrations in the Brisbane metropolitan area, Australia. Environ. Model. Softw. 2017, 95, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.; Tunno, B.J.; Michanowicz, D.R.; Kinnee, E.; Shmool, J.L.; Gillooly, S.; Clougherty, J.E. Hybrid land use regression modeling for estimating spatio-temporal exposures to PM2.5, BC, and metal components across a metropolitan area of complex terrain and industrial sources. Sci. Total Environ. 2019, 673, 54–63. [Google Scholar] [CrossRef]
- Gulliver, J.; de Hoogh, K.; Hoek, G.; Vienneau, D.; Fecht, D.; Hansell, A. Back-extrapolated and year-specific NO2 land use regression models for Great Britain-Do they yield different exposure assessment? Environ. Int. 2016, 92–93, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Marcon, A.; de Hoogh, K.; Gulliver, J.; Beelen, R.; Hansell, A.L. Development and transferability of a nitrogen dioxide land use regression model within the Veneto region of Italy. Atmos. Environ. 2015, 122, 696–704. [Google Scholar] [CrossRef]
- Habermann, M.; Billger, M.; Haeger-Eugensson, M. Land use regression as method to model air pollution. Previous results for Gothenburg/Sweden. Procedia Eng. 2015, 115, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Farrell, W.; Weichenthal, S.; Goldberg, M.; Valois, M.-F.; Shekarrizfard, M.; Hatzopoulou, M. Near roadway air pollution across a spatially extensive road and cycling network. Environ. Pollut. 2016, 212, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Leem, J.-H.; Kim, H.-C.; Hwang, S.-S.; Jung, D.-Y.; Park, M.-S.; Kim, J.-A.; Lee, J.-J.; Park, N.-W.; Kang, S.-C. Land Use Regression Model for Assessing Exposure and Impacts of Air Pollutants in School Children. J. Korean Soc. Atmos. Environ. 2012, 28, 571–580. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- von Schneidemesser, E.; Steinmar, K.; Weatherhead, E.C.; Bonn, B.; Gerwig, H.; Quedenau, J. Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. Sci. Total Environ. 2019, 688, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.-S.; Choi, M.J. Effects of compact urban development on air pollution: Empirical evidence from Korea. Sustainability 2014, 6, 5968–5982. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Beelen, R.; Kos, G.; Dijkema, M.; van der Zee, S.C.; Fischer, P.H.; Brunekreef, B. Land use regression model for ultrafine particles in Amsterdam. Environ. Sci. Technol. 2011, 45, 622–628. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air quality and urban form in US urban areas: Evidence from regulatory monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Gaeta, A.; Cattani, G.; di Bucchianico, A.D.M.; De Santis, A.; Cesaroni, G.; Badaloni, C.; Ancona, C.; Forastiere, F.; Sozzi, R.; Bolignano, A.; et al. Development of nitrogen dioxide and volatile organic compounds land use regression models to estimate air pollution exposure near an Italian airport. Atmos. Environ. 2016, 131, 254–262. [Google Scholar] [CrossRef]
- Betancourt, R.M.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J.P.; Sarmiento, O.L.; Gallo-Murcia, S.M.; Contreras, Y. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 2017, 157, 135–145. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, X.; Fung, J.C.-H.; Ng, E. Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring. Build. Environ. 2018, 128, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Mavroidis, I.; Griffiths, R.F. Local Characteristics of Atmospheric Dispersion within Building Arrays. Atmos. Environ. 2001, 35, 2941–2954. [Google Scholar] [CrossRef]
- Oh, K.; Chung, H. The Influence of Urban Development Density on Air Pollution. J. Korea Plan. Assoc. 2007, 42, 197–210. (In Korean) [Google Scholar]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: Outdoor nitrogen dioxide in the United States in 2000 and 2010. Environ. Health Perspect. 2017, 125, 097012. [Google Scholar] [CrossRef] [Green Version]
- Flatø, H. Socioeconomic status, air pollution and desire for local environmental protection in China: Insights from national survey data. J. Environ. Plan. Manag. 2020, 63, 49–66. [Google Scholar] [CrossRef]
- Choo, J.; Kim, J.; Pyo, M.; Bae, H.; Lim, Y.; Cho, M.; Choi, S.; Park, J.; Kwon, B.; Yoon, C.; et al. Environmental Policy for Low-income People in Urban Areas Ⅲ. Korea Environ. Inst. 2009, 3, 1–753. (In Korean) [Google Scholar]
- Pearce, J.; Kingham, S.; Zawar-Reza, P. Every Breath You Take? Environmental Justice and Air Pollution in Christchurch, New Zealand. Environ. Plan. A 2006, 38, 919–938. [Google Scholar] [CrossRef]
- Ministry of Environment (Korea). Annual Report of Air Quality in Korea 2017. Available online: http://www.airkorea.or.kr/web/detailViewDown?pMENU_NO=125 (accessed on 21 September 2019).
- AirKorea. Available online: http://www.airkorea.or.kr/web/stationInfo?pMENU_NO=93 (accessed on 17 September 2019).
- Korean Statistical Information Service (KOSIS). Available online: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01 (accessed on 28 September 2019).
- National Spatial Data Infrastructure Portal (NSDI). Available online: http://www.nsdi.go.kr/lxportal/?menuno=2679 (accessed on 28 September 2019).
- Road Name Address Developer Center. Available online: https://www.juso.go.kr/addrlink/main.do (accessed on 29 September 2019).
- Korea Transport Data Base (KTDB). Available online: https://www.ktdb.go.kr/www/index.do (accessed on 29 September 2019).
- Lee, H.; Sim, J. Geographic Information Science, 2nd ed.; Bobmunsa: Paju, Korea, 2013. (In Korean) [Google Scholar]
- Anselin, L. Spatial Econometrics; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL; GeoDa Press: Urbana, IL, USA, 2014. [Google Scholar]
- Rajamani, J.; Bhat, C.R.; Handy, S.; Knaap, G.; Song, Y. Assessing impact of urban form measures on nonwork trip mode choice after controlling for demographic and level-of-service effects. Transp. Res. Rec. 2003, 1831, 158–165. [Google Scholar] [CrossRef]
- Rajaretnam, T. Statistics for Social Science; SAGE: Los Angeles, CA, USA, 2016. [Google Scholar]
- Choi, G.; Heo, S.; Lee, J.-T. Assessment of environmental injustice in Korea using synthetic air quality index and multiple indicators of socioeconomic status: A cross-sectional study. J. Air Waste Manag. Assoc. 2016, 66, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and cardiovascular diseases in the elderly: An overview. Int. J. Environ. Res. Public Health 2015, 12, 8187–8197. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, S.; Fan, C.; Bai, Z.; Yang, K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2016, 23, 843–850. [Google Scholar] [CrossRef]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.-F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef]
- Patton, A.P.; Perkins, J.; Zamore, W.; Levy, J.I.; Brugge, D.; Durant, J.L. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos. Environ. 2014, 99, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2016, 32, 106–120. [Google Scholar] [CrossRef]
- Chen, K.; Martirosyan, K.S.; Luss, D. Transient temperature rise during regeneration of diesel particulate filters. Chem. Eng. J. 2011, 176–177, 144–150. [Google Scholar] [CrossRef]
- Hess, D.B.; Ray, P.D.; Stinson, A.E.; Park, J. Determinants of exposure to fine particulate matter (PM2.5) for waiting passengers at bus stops. Atmos. Environ. 2010, 44, 5174–5182. [Google Scholar] [CrossRef]
- Sahu, S.K.; Beig, G.; Parkhi, N.S. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010. Atmos. Environ. 2011, 45, 6180–6190. [Google Scholar] [CrossRef]
- Park, S.-H.; Ko, D.-W. Investigating the effects of the built environment on PM2.5 and PM10: A case study of Seoul Metropolitan city, South Korea. Sustainability 2018, 10, 4552–4562. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, S.; Zheng, Q.; Shen, X.; Wang, S.; Han, P.; Liu, Z.; Yan, K. Recent progress of dry electrostatic precipitation for PM2.5 emission control from coal-fired boilers. Int. J. Plasma Environ. Sci. Technol. 2015, 9, 69–126. [Google Scholar]
- Chang, J.-S. Next generation integrated electrostatic gas cleaning systems. J. Electrostat. 2003, 57, 273–291. [Google Scholar] [CrossRef]
- Calle, C.I.; Buhler, C.R.; McFall, J.L.; Snyder, S.J. Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions. J. Electrostat. 2009, 67, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Mehrpouya, M.; Dehghanghadikolaei, A.; Fotovvati, B.; Vosooghnia, A.; Emamian, S.S.; Gisario, A. The potential of additive manufacturing in the smart factory industrial 4.0: A review. Appl. Sci. 2019, 9, 3865–3898. [Google Scholar] [CrossRef] [Green Version]
- Kim, W. A Study on the Policy Options Considering Life Cycle Management for PM, NOx Emissions of Diesel Vehicles in Seoul. Seoul Inst. 2013, 140, 1–22. (In Korean) [Google Scholar]
- Molitor, J.; Su, J.G.; Molitor, N.-T.; Rubio, V.G.; Richardson, S.; Hastie, D.; Morello-Frosch, R.; Jerrett, M. Identifying Vulnerable Populations through an Examination of the Association between Multipollutant Profiles and Poverty. Environ. Sci. Technol. 2011, 45, 7754–7760. [Google Scholar] [CrossRef] [Green Version]
- Carrier, M.; Apparicio, P.; Séguin, A.-M.; Crouse, D. The Application of Three Methods to Measure the Statistical Association between Different Social Groups and the Concentration of Air Pollutants in Montreal: A Case of Environmental Equity. Transp. Res. D Transp. Environ. 2014, 30, 38–52. [Google Scholar] [CrossRef]
Classification | Variables | Descriptions |
---|---|---|
Dependent variables | PM10 | 2016–2018 average PM10 concentration in Daegu |
PM2.5 | 2016–2018 average PM2.5 concentration in Daegu | |
NO2 | 2016–2018 average NO2 concentration in Daegu | |
CO | 2016–2018 average CO concentration in Daegu | |
SO2 | 2016–2018 average SO2 concentration in Daegu | |
Socioeconomic characteristics | Children under 15 years | Ratio of people under 15 years to the total population |
Elderly above 65 years | Ratio of people above 65 years to the total population | |
National basic livelihood security recipient | Ratio of national basic livelihood security recipients to the total population | |
Road characteristics | Neighborhoodstreet | Ratio of neighborhood streets to the total road |
Main road | Ratio of main roads to the total road | |
Intersection | Number of intersections per unit area | |
Bus stop | Number of bus stops per unit area | |
Land-use characteristics | Residential area | Ratio of residential areas to the total area |
Commercial area | Ratio of commercial areas to the total area | |
Industrial area | Presence of industrial areas (1 = presence, 0 = otherwise) | |
Park and green area | Ratio of park and green areas to the total area | |
Mixed land use | Degree of mixed land uses (0(single use) to 1(mixed use)) | |
Land development characteristics | Total used surface of residential buildings | Sum of total used surfaces of residential buildings |
Total used surface of commercial buildings | Sum of total used surfaces of commercial buildings | |
Single-family housing | Number of single-family houses per unit area | |
Multifamily housing | Number of multifamily houses per unit area |
Dependent Variable | Moran’s I | Z-Score |
---|---|---|
PM10 | 0.435 | 31.752 |
PM2.5 | 0.287 | 21.148 |
NO2 | 0.394 | 28.835 |
CO | 0.338 | 24.753 |
SO2 | 0.459 | 33.417 |
Classification | Variables | Units | Mean | Std. Dev |
---|---|---|---|---|
Dependent variables | PM10 | μg/m3 | 41.370 | 3.930 |
PM2.5 | μg/m3 | 19.720 | 2.180 | |
NO2 | ppm | 0.020 | 0.002 | |
CO | ppm | 0.427 | 0.028 | |
SO2 | ppm | 0.003 | 0.000 | |
Socioeconomic characteristics | Children under 15 years | % | 10.651 | 4.000 |
Elderly above 65 years | % | 16.180 | 4.947 | |
National basic livelihood security recipient | % | 5.375 | 4.425 | |
Road characteristics | Neighborhood street | % | 41.887 | 24.260 |
Main road | % | 49.093 | 25.308 | |
Intersection | Number/km2 | 121.30 | 135.32 | |
Bus stop | Number/km2 | 11.242 | 6.850 | |
Land use characteristics | Residential area | % | 49.330 | 29.426 |
Commercial area | % | 12.325 | 16.818 | |
Industrial area | 0 or 1 | 0.19 | 0.397 | |
Park and green area | % | 5.364 | 9.337 | |
Mixed land use | 0–1 | 0.322 | 0.157 | |
Land development characteristics | Total used surface of residential buildings | m2 | 524,222 | 378,931 |
Total used surface of commercial buildings | m2 | 195,895 | 151,254 | |
Single-family housing | Number/km2 | 955.83 | 914.23 | |
Multifamily housing | Number/km2 | 86.337 | 106.17 |
Classification | PM10 | PM2.5 | NO2 | CO | SO2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Z | Coefficient | Z | Coefficient | Z | Coefficient | Z | Coefficient | Z | ||
Socioeconomic characteristics | Children under 15 | 0.008 | 0.257 | 0.007 | 0.300 | 0.000 | 0.093 | 0.000 | 0.520 | 0.000 | 1.640 |
Elderly above 65 | 0.005 | 0.165 | 0.008 | 0.348 | −0.000 | −0.406 | −0.000 | −0.206 | 0.000 | 1.315 | |
National basic livelihood security recipient | 0.011 | 0.431 | 0.005 | 0.253 | −0.000 | −0.264 | 0.000 | 0.029 | 0.000 | 1.310 | |
Road characteristics | Neighborhood road | 0.002 | 0.230 | 0.006 | 0.989 | 0.000 | 0.766 | 0.000 | 1.705 | 0.000 | 1.645 |
Main road | 0.004 | 0.530 | 0.005 | 0.818 | 0.000 | 0.551 | 0.000 | 1.509 | 0.000 * | 2.214 | |
Intersection | −0.099 | −0.725 | −0.197 | −1.902 | −0.000 | −1.057 | −0.001 | −1.314 | −0.000 | −0.949 | |
Bus stop | 0.073 | 0.404 | 0.278 * | 2.0247 | −0.000 | −0.225 | 0.002 | 0.167 | 0.000 | 1.865 | |
Land-use characteristics | Housing area | −0.013 * | −2.017 | −0.004 | −0.881 | −0.000 | −1.422 | −0.000 | −0.857 | −0.000 * | −2.220 |
Commercial area | −0.017 | −1.941 | −0.015 * | −2.323 | −0.000 | −0.864 | −0.000 | 0.343 | −0.000 | −1.568 | |
Industrial area | 0.504 | 1.661 | 0.453 * | 1.984 | 0.000 | 1.666 | 0.006 * | 2.196 | 0.000 | 1.739 | |
Park area | −0.160 | −1.810 | −0.132 * | −2.001 | −0.000 | −1.034 | −0.001 | −1.289 | −0.000 | −1.933 | |
Mixed use | 0.503 | 0.617 | −0.220 | −0.359 | 0.000 | 0.449 | 0.007 | 0.920 | 0.000 | 0.452 | |
Development density characteristics | Total used surface of residential buildings | −0.000 * | −2.229 | −0.000 | −1.176 | −0.000 * | −2.199 | −0.000 * | −2.067 | −0.000 | −1.906 |
Total used surface of commercial buildings | 0.000 | 0.419 | 0.000 | 0.563 | −0.000 | −0.000 | 0.000 | 0.016 | 0.000 | 1.615 | |
Single-family housing | 0.381 ** | 2.963 | 0.138 | 1.430 | 0.000 ** | 2.950 | 0.002 | 1.920 | 0.000 ** | 3.287 | |
Multifamily housing | 0.034 | 0.251 | 0.066 | 0.646 | 0.000 | 0.203 | 0.000 | 0.501 | −0.000 | −0.268 | |
Rho | 0.959 ** | 49.953 | 0.966 ** | 54.931 | 0.936 ** | 36.302 | 0.932 ** | 35.142 | 0.915 ** | 32.374 | |
Lagrange multiplier (LM) lag | 186.04 ** | 172.21 ** | 152.90 ** | 160.48 ** | 123.41 ** | ||||||
LM error | 120.86 ** | 123.84 ** | 103.49 ** | 111.16 ** | 60.612 ** | ||||||
Robust LM lag | 65.344 ** | 50.356 ** | 49.563 ** | 49.575 ** | 62.952 ** | ||||||
Robust LM error | 0.160 | 1.985 | 0.148 | 0.256 | 0.154 | ||||||
Log likelihood | −214.80 | −175.92 | 785.33 | 426.75 | 1061.94 | ||||||
N | 139 | 139 | 139 | 139 | 139 | ||||||
R2 | 0.938 | 0.886 | 0.888 | 0.880 | 0.925 | ||||||
Akaike information criterion (AIC) | 465.60 | 387.85 | −1534.66 | −817.51 | −2087.88 | ||||||
Schwarz criterion (SC) | 518.42 | 440.67 | −1481.84 | −764.69 | −2035.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Ko, D. Spatial Regression Modeling Approach for Assessing the Spatial Variation of Air Pollutants. Atmosphere 2021, 12, 785. https://doi.org/10.3390/atmos12060785
Park S, Ko D. Spatial Regression Modeling Approach for Assessing the Spatial Variation of Air Pollutants. Atmosphere. 2021; 12(6):785. https://doi.org/10.3390/atmos12060785
Chicago/Turabian StylePark, Seunghoon, and Dongwon Ko. 2021. "Spatial Regression Modeling Approach for Assessing the Spatial Variation of Air Pollutants" Atmosphere 12, no. 6: 785. https://doi.org/10.3390/atmos12060785
APA StylePark, S., & Ko, D. (2021). Spatial Regression Modeling Approach for Assessing the Spatial Variation of Air Pollutants. Atmosphere, 12(6), 785. https://doi.org/10.3390/atmos12060785