Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea
Abstract
:1. Introduction
2. Description of the GMAF
2.1. GMAF Configuration and Input Data
2.2. Forecasting Period and Area
2.3. Grid Nudging Based FDDA Method
2.4. Modification of the CMAQ
2.4.1. Below-Cloud Scavenging
2.4.2. Secondary Organic Aerosol Formation
2.4.3. Evaporation Loss of Nitrate
2.5. Implementation of Bias Adjustment Techniques
2.6. Forecast Performance Evaluation Metrics
2.6.1. Forecast Variables
2.6.2. Performance Evaluation Metrics of Continuous Forecasts
2.6.3. Performance Evaluation Metrics of Categorical Forecasts
3. Results and Discussion
3.1. Performance Evaluation of the Base Forecast
3.2. Modeling of Nitrate Evaporation Loss
3.3. Application of Bias Adjustment Technique
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fay, J.A.; Rosenzweig, J.J. An analytical diffusion model for long distance transport of air pollutants. Atmos. Environ. 1980, 14, 355–365. [Google Scholar] [CrossRef]
- Van Dop, H.; De Haan, B. Mesoscale air pollution dispersion modelling. Atmos. Environ. 1984, 18, 545–552. [Google Scholar] [CrossRef]
- Pudykiewicz, J.; Benoit, R.; Staniforth, A. Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos. Ocean 1985, 23, 267–303. [Google Scholar] [CrossRef]
- McRae, G.J.; Goodin, W.R.; Seinfeld, J.H. Development of a second-generation mathematical model for urban air pollution—I. Model formulation. Atmos. Environ. 1982, 16, 679–696. [Google Scholar] [CrossRef]
- Carmichael, G.R.; Peters, L.K. An Eulerian transport/transformation/removal model for SO2 and sulfate—I. Model development. Atmos. Environ. 1984, 18, 937–951. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Carmichael, G.R. An evaluation of the effect of reductions in ambient levels of primary pollutants on sulfate and nitrate wet deposition. Atmos. Environ. 1989, 23, 1009–1031. [Google Scholar] [CrossRef]
- Carmichael, G.R.; Peters, L.K. A second generation model for regional-scale transport/chemistry/deposition. Atmos. Environ. 1986, 20, 173–188. [Google Scholar] [CrossRef]
- Chang, J.; Brost, R.; Isaksen, I.; Madronich, S.; Middleton, P.; Stockwell, W.; Walcek, C. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res. Atmos. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Development and application of a new air pollution modeling system—II. Aerosol module structure and design. Atmos. Environ. 1997, 31, 131–144. [Google Scholar] [CrossRef]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Mai, X.; Ma, Y.; Yang, Y.; Li, D.; Qiu, X. Impact of grid nudging parameters on dynamical downscaling during summer over mainland China. Atmosphere 2017, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.H.; Otte, T.L.; Nolte, C.G.; Otte, M.J. Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Clim. 2012, 25, 2805–2823. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agusti-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, K.; Chatani, S.; Itahashi, S.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; Miya, Y.; Komatsu, H.; Sakurai, T. Model Inter-Comparison for PM2. 5 Components over urban Areas in Japan in the J-STREAM Framework. Atmosphere 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.; Fox, T.; Fuentes, M.; Gilliland, A.; Hanna, S.; Hogrefe, C.; Irwin, J.; Rao, S.T.; Scheffe, R.; Schere, K. A framework for evaluating regional-scale numerical photochemical modeling systems. Environ. Fluid Mech. 2010, 10, 471–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itahashi, S.; Ge, B.; Sato, K.; Fu, J.S.; Wang, X.; Yamaji, K.; Nagashima, T.; Li, J.; Kajino, M.; Liao, H. MICS-Asia III: Overview of model intercomparison and evaluation of acid deposition over Asia. Atmos. Chem. Phys. 2020, 20, 2667–2693. [Google Scholar] [CrossRef] [Green Version]
- KECO. AirKorea. Available online: https://www.airkorea.or.kr/eng (accessed on 28 December 2005).
- Russell, A.; Dennis, R. NARSTO critical review of photochemical models and modeling. Atmos. Environ. 2000, 34, 2283–2324. [Google Scholar] [CrossRef]
- Kanamitsu, M.; DeHaan, L. The Added Value Index: A new metric to quantify the added value of regional models. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Mathur, R.; Trivikrama Rao, S. Assessment of bias-adjusted PM 2.5 air quality forecasts over the continental United States during 2007. Geosci. Model Dev. 2010, 3, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Djalalova, I.; Wilczak, J.; McKeen, S.; Grell, G.; Peckham, S.; Pagowski, M.; DelleMonache, L.; McQueen, J.; Tang, Y.; Lee, P. Ensemble and bias-correction techniques for air quality model forecasts of surface O3 and PM2. 5 during the TEXAQS-II experiment of 2006. Atmos. Environ. 2010, 44, 455–467. [Google Scholar] [CrossRef]
- Delle Monache, L.; Nipen, T.; Deng, X.; Zhou, Y.; Stull, R. Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res. Atmos. 2006, 111, D05308. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–78. [Google Scholar] [CrossRef]
- Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond mechanism for version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 10–13 October 2010; pp. 11–13. [Google Scholar]
- Pye, H. Overview of CMAQ-AERO7. Available online: https://github.com/USEPA/CMAQ/blob/master/DOCS/Release_Notes/aero7_overview.md (accessed on 17 July 2019).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note-475+ STR; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A. Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 45R1) of ECMWF. Geosci. Model Dev. Discuss 2019, 12, 4627–4659. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.-Y.; Lee, H.-K.; Choi, S.-W.; Seol, S.-H.; Jin, H.-A.; Yoo, C.; Lim, J.-y.; Kim, J.-s. Analysis of the national air pollutant emission inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian J. Atmos. Environ. 2019, 13, 212–231. [Google Scholar] [CrossRef]
- Choi, J.; Park, R.J.; Lee, H.-M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.-H.; Ban, S.-J.; Lee, M.-D. Impacts of local vs. trans-boundary emissions from different sectors on PM2. 5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Guenther, A.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.-H.; Kim, Y.; Kim, H.-K.; Choi, K.-C.; Eum, J.-H.; Lee, J.-B.; Lim, J.-H.; Kim, J.; Seong, M. Development of the CREATE Inventory in Support of Integrated Climate and Air Quality Modeling for Asia. Sustainability 2020, 12, 7930. [Google Scholar] [CrossRef]
- Crawford, J.; Ahn, J.; Al-Saadi, J.; Chang, L.; Emmons, L.; Kim, J.; Lee, G.; Park, J.; Park, R.; Woo, J. The Korea-United States air quality (KORUS-AQ) field study. Elem. Sci. Anth 2020. [Google Scholar]
- Hoke, J.E.; Anthes, R.A. The initialization of numerical models by a dynamic-initialization technique. Mon. Weather Rev. 1976, 104, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.R.; Seaman, N.L. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Weather Rev. 1990, 118, 1250–1277. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.; Ku, M.; Hao, W.; Sistla, G.; Kiss, M.; Johnson, M.; Brown, D. Sensitivity Testing of WRF Physics Parameterizations for Meteorological Modeling and Protocol in Support of Regional SIP Air Quality Modeling in the OTR, Ozone Transport Commission Modeling Committee; Modeling Committee: Washington, DC, USA, 2009. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Hoboken: Hoboken, NJ, USA, 2006. [Google Scholar]
- Slinn, W. Precipitation Scavenging, in Atmospheric Sciences and Power Production-1979; Division of Biomedical Environmental Research, US Department of Energy: Washington, DC, USA, 1983; Chapter 11; pp. 57–90. [Google Scholar]
- Scott, B. Parameterization of sulfate removal by precipitation. J. Appl. Meteorol. Climatol. 1978, 17, 1375–1389. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ge, B.; Chen, X.; Sun, Y.; Cheng, N.; Li, M.; Pan, X.; Ma, Z.; Pan, Y.; Wang, Z. Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China. Atmos. Chem. Phys. 2019, 19, 15569–15581. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.N.; Woody, M.C.; Jimenez, J.L.; Carlton, A.M.G.; Hayes, P.L.; Liu, S.; Ng, N.L.; Russell, L.M.; Setyan, A.; Xu, L. Semivolatile POA and parameterized total combustion SOA in CMAQv5. 2: Impacts on source strength and partitioning. Atmos. Chem. Phys. 2017, 17, 11107–11133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hering, S.; Cass, G. The magnitude of bias in the measurement of PM25 arising from volatilization of particulate nitrate from Teflon filters. J. Air Waste Manag. Assoc. 1999, 49, 725–733. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Magliano, K.L. Loss of PM2. 5 nitrate from filter samples in central California. J. Air Waste Manag. Assoc. 2005, 55, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
- Frank, N.H. Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern US cities. J. Air Waste Manag. Assoc. 2006, 56, 500–511. [Google Scholar] [CrossRef]
- McKeen, S.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E.Y.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R. Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doswell III, C.A.; Davies-Jones, R.; Keller, D.L. On summary measures of skill in rare event forecasting based on contingency tables. Weather Forecast. 1990, 5, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Ryan, W.F.; Piety, C.A.; Luebehusen, E.D. Air quality forecasts in the mid-Atlantic region: Current practice and benchmark skill. Weather Forecast. 2000, 15, 46–60. [Google Scholar] [CrossRef]
- Kang, D.; Eder, B.K.; Stein, A.F.; Grell, G.A.; Peckham, S.E.; McHenry, J. The New England air quality forecasting pilot program: Development of an evaluation protocol and performance benchmark. J. Air Waste Manag. Assoc. 2005, 55, 1782–1796. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [Google Scholar] [CrossRef]
- Ghim, Y.S.; Choi, Y.; Kim, S.; Bae, C.H.; Park, J.; Shin, H.J. Bias Correction for Forecasting PM 2.5 Concentrations Using Measurement Data from Monitoring Stations by Region. Asian J. Atmos. Environ. (AJAE) 2018, 12, 338–345. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Harrison, R.; Coe, H.; Williams, P.; Allan, J. Real time chemical characterization of local and regional nitrate aerosols. Atmos. Chem. Phys. 2009, 9, 3709–3720. [Google Scholar] [CrossRef] [Green Version]
Parameter | Annual Mean Concentrations (μg/m3) | Number of Days Exceeding the PM2.5 Threshold | |||
---|---|---|---|---|---|
Year | Seoul | Busan | Seoul | Busan | |
2015 | 23 | 26 | 42 | 66 | |
2016 | 26 | 27 | 75 | 74 | |
2017 | 25 | 26 | 63 | 61 | |
2018 | 23 | 23 | 61 | 61 | |
2019 | 25 | 21 | 64 | 41 |
Nudged Variable | Nudging Coefficient | ||
---|---|---|---|
Outer Domain | Inner Nest | ||
WRF | U and V winds | 5.0 × 10−4 | 2.5 × 10−4 |
Temperature | 5.0 × 10−4 | 2.5 × 10−4 | |
Water vapor mixing ratio | 1.0 × 10−4 | 1.0 × 10−4 | |
CMAQ | SO2, CO, NO, NO2, isoprene, O3, dust, sea salt | 3.0 × 10−4 | 0 |
Region Name | Weighting Factor | Continuous Forecast | Categorical Forecast | ||||
---|---|---|---|---|---|---|---|
R | NMB | NME | POD | FAR | HSS | ||
Seoul | 0.0 | 0.76 | 4% | 22% | 0.68 | 0.30 | 0.61 |
0.2 | 0.77 | 9% | 23% | 0.75 | 0.35 | 0.61 | |
0.4 | 0.78 | 13% | 25% | 0.81 | 0.38 | 0.61 | |
0.7 | 0.78 | 19% | 28% | 0.83 | 0.47 | 0.53 | |
1.0 | 0.78 | 26% | 33% | 0.91 | 0.52 | 0.49 | |
Busan | 0.0 | 0.79 | −20% | 26% | 0.39 | 0.16 | 0.47 |
0.2 | 0.81 | −17% | 24% | 0.44 | 0.14 | 0.52 | |
0.4 | 0.81 | −14% | 22% | 0.51 | 0.16 | 0.58 | |
0.7 | 0.82 | −9% | 21% | 0.57 | 0.20 | 0.60 | |
1.0 | 0.83 | −5% | 21% | 0.64 | 0.25 | 0.63 | |
Gwangju | 0.0 | 0.75 | −2% | 25% | 0.49 | 0.26 | 0.54 |
0.2 | 0.77 | 2% | 25% | 0.53 | 0.36 | 0.51 | |
0.4 | 0.78 | 6% | 25% | 0.66 | 0.38 | 0.58 | |
0.7 | 0.80 | 12% | 26% | 0.77 | 0.39 | 0.62 | |
1.0 | 0.81 | 18% | 29% | 0.89 | 0.44 | 0.62 | |
Daegu | 0.0 | 0.77 | −7% | 23% | 0.43 | 0.19 | 0.51 |
0.2 | 0.78 | −4% | 22% | 0.48 | 0.24 | 0.53 | |
0.4 | 0.78 | −1% | 22% | 0.60 | 0.30 | 0.59 | |
0.7 | 0.79 | 4% | 22% | 0.69 | 0.32 | 0.62 | |
1.0 | 0.79 | 9% | 24% | 0.74 | 0.41 | 0.58 |
R | NMB | NME | |||
---|---|---|---|---|---|
Goal | Criteria | Goal | Criteria | Goal | Criteria |
>0.70 | >0.40 | <±10% | <±30% | <±35% | <±50% |
R = 1 is perfect correlation R = 0 is no correlation | NMB < 0 is under-forecast NMB > 0 is over-forecast | NME = 0 is perfect forecast |
Event Forecast | Event Observed | |
---|---|---|
Yes | No | |
Yes | A | B |
No | C | D |
PM2.5,obs # | Continuous Forecast | N_Day % | Categorical Forecast | ||||||
---|---|---|---|---|---|---|---|---|---|
R | NMB | NME | POD | FAR | HSS | ||||
Seoul | Winter | 26.4 μg/m3 | 0.87 | 26% | 27% | 17 | 1.00 | 0.48 | 0.58 |
Spring | 30.2 μg/m3 | 0.78 | 3% | 21% | 31 | 0.90 | 0.15 | 0.81 | |
Summer | 23.8 μg/m3 | 0.72 | 12% | 26% | 12 | 0.58 | 0.53 | 0.44 | |
Fall | 23.8 μg/m3 | 0.77 | 12% | 25% | 15 | 0.60 | 0.50 | 0.45 | |
Year | 26.0 μg/m3 | 0.78 | 13% | 25% | 75 | 0.81 | 0.38 | 0.61 | |
Busan | Winter | 30.2 μg/m3 | 0.86 | −16% | 20% | 22 | 0.68 | 0.17 | 0.68 |
Spring | 30.8 μg/m3 | 0.72 | −11% | 23% | 25 | 0.52 | 0.24 | 0.51 | |
Summer | 21.8 μg/m3 | 0.81 | −9% | 20% | 9 | 0.22 | 0.00 | 0.34 | |
Fall | 24.5 μg/m3 | 0.79 | −19% | 25% | 14 | 0.43 | 0.00 | 0.56 | |
Year | 26.8 μg/m3 | 0.81 | −14% | 22% | 70 | 0.51 | 0.16 | 0.58 | |
Gwangju | Winter | 25.9 μg/m3 | 0.83 | 11% | 24% | 22 | 0.86 | 0.27 | 0.72 |
Spring | 28.0 μg/m3 | 0.70 | −1% | 25% | 21 | 0.52 | 0.42 | 0.43 | |
Summer | 18.6 μg/m3 | 0.68 | 11% | 27% | 3 | 0.00 | 1.00 | −0.03 | |
Fall | 21.3 μg/m3 | 0.80 | 7% | 23% | 7 | 0.71 | 0.44 | 0.59 | |
Year | 23.5 μg/m3 | 0.78 | 6% | 25% | 53 | 0.66 | 0.38 | 0.58 | |
Daegu | Winter | 28.6 μg/m3 | 0.82 | −6% | 19% | 25 | 0.72 | 0.18 | 0.68 |
Spring | 26.3 μg/m3 | 0.77 | 2% | 21% | 16 | 0.69 | 0.35 | 0.59 | |
Summer | 20.0 μg/m3 | 0.64 | 7% | 27% | 2 | 0.00 | 1.00 | −0.03 | |
Fall | 23.4 μg/m3 | 0.79 | −5% | 21% | 15 | 0.40 | 0.25 | 0.46 | |
Year | 24.6 μg/m3 | 0.78 | −1% | 22% | 58 | 0.60 | 0.30 | 0.59 |
Nitrate Evaporation Loss | Continuous Forecasting | Categorical Forecasting | ||||||
---|---|---|---|---|---|---|---|---|
R | NMB | NME | POD | FAR | HSS | |||
Seoul | Spring | Not included | 0.78 | 3% | 21% | 0.90 | 0.15 | 0.81 |
Included | 0.76 | 0% | 22% | 0.68 | 0.13 | 0.67 | ||
Fall | Not included | 0.77 | 12% | 25% | 0.60 | 0.50 | 0.45 | |
Included | 0.77 | 4% | 23% | 0.33 | 0.50 | 0.31 | ||
Busan | Spring | Not included | 0.72 | −11% | 23% | 0.52 | 0.24 | 0.51 |
Included | 0.67 | −13% | 26% | 0.52 | 0.24 | 0.51 | ||
Fall | Not included | 0.79 | −19% | 25% | 0.43 | 0 | 0.56 | |
Included | 0.78 | −22% | 27% | 0.5 | 0 | 0.63 | ||
Gwangju | Spring | Not included | 0.70 | −1% | 25% | 0.52 | 0.42 | 0.43 |
Included | 0.64 | −6% | 27% | 0.33 | 0.42 | 0.31 | ||
Fall | Not included | 0.80 | 7% | 23% | 0.71 | 0.44 | 0.59 | |
Included | 0.81 | −2% | 22% | 0.29 | 0.33 | 0.37 | ||
Daegu | Spring | Not included | 0.77 | 2% | 21% | 0.69 | 0.35 | 0.59 |
Included | 0.72 | −3% | 23% | 0.56 | 0.25 | 0.58 | ||
Fall | Not included | 0.79 | −5% | 21% | 0.4 | 0.25 | 0.46 | |
Included | 0.80 | −10% | 22% | 0.4 | 0 | 0.53 |
Continuous Forecast | Categorical Forecast | ||||||
---|---|---|---|---|---|---|---|
R | NMB | NME | POD | FAR | HSS | ||
Seoul | Raw forecast | 0.78 | 13% | 25% | 0.81 | 0.38 | 0.61 |
Additive bias correction | 0.78 | 0% | 23% | 0.68 | 0.32 | 0.59 | |
Multiplicative bias correction | 0.80 | 1% | 21% | 0.65 | 0.34 | 0.57 | |
Kalman filter bias adjustment | 0.82 | 7% | 21% | 0.80 | 0.37 | 0.62 | |
Busan | Raw forecast | 0.81 | −14% | 22% | 0.51 | 0.16 | 0.58 |
Additive bias correction | 0.78 | 0% | 21% | 0.65 | 0.32 | 0.58 | |
Multiplicative bias correction | 0.76 | 1% | 23% | 0.68 | 0.33 | 0.59 | |
Kalman filter bias adjustment | 0.83 | −7% | 19% | 0.62 | 0.24 | 0.62 | |
Gwangju | Raw forecast | 0.78 | 6% | 25% | 0.66 | 0.38 | 0.58 |
Additive bias correction | 0.79 | 0% | 25% | 0.68 | 0.29 | 0.64 | |
Multiplicative bias correction | 0.78 | 1% | 25% | 0.62 | 0.39 | 0.55 | |
Kalman filter bias adjustment | 0.83 | 3% | 22% | 0.75 | 0.25 | 0.71 | |
Daegu | Raw forecast | 0.78 | −1% | 22% | 0.60 | 0.30 | 0.59 |
Additive bias correction | 0.77 | 0% | 23% | 0.67 | 0.34 | 0.59 | |
Multiplicative bias correction | 0.75 | 1% | 23% | 0.67 | 0.38 | 0.57 | |
Kalman filter bias adjustment | 0.82 | −1% | 20% | 0.70 | 0.26 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Park, H.; Son, J.; Chang, L. Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea. Atmosphere 2021, 12, 411. https://doi.org/10.3390/atmos12030411
Cho S, Park H, Son J, Chang L. Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea. Atmosphere. 2021; 12(3):411. https://doi.org/10.3390/atmos12030411
Chicago/Turabian StyleCho, SeogYeon, HyeonYeong Park, JeongSeok Son, and LimSeok Chang. 2021. "Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea" Atmosphere 12, no. 3: 411. https://doi.org/10.3390/atmos12030411
APA StyleCho, S., Park, H., Son, J., & Chang, L. (2021). Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea. Atmosphere, 12(3), 411. https://doi.org/10.3390/atmos12030411