Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Hydro-Priming in Tepid and Hot Water
2.2. Evaluation of Hydro-Priming in Tepid Water
2.3. Evaluation of Hydro-Priming in Hot Water
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Sources of Water
3.2. Effect of Tepid Hydro-Priming on Seed Germination and Seedling Growth Parameters
3.2.1. Germination Percentage (GP)
3.2.2. Mean Germination Time (MGT)
3.2.3. Germination Rate Index (GRI)
3.2.4. Root Vigor Index (RVI)
3.2.5. Seedling Dry Weight (SDW)
3.3. Effect of Hot Hydro-Priming on Seed Germination and Seedling Growth Parameters
3.3.1. Germination Percentage (GP)
3.3.2. Mean Germination Time (MGT)
3.3.3. Germination Rate Index (GRI)
3.3.4. Root Vigor Index (RVI)
3.3.5. Seedling Dry Weight (SDW)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Guan, B.; Zhou, D.; Yu, J.; Li, G.; Lou, Y. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.). Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dembélé, S. Developing Cultivation Practices to Combat early Drought Challenges: The Case of Sorghum in Mali. Ph.D. Thesis, University of Cape Coast, Cape Coast, Ghana, 2016. [Google Scholar]
- Hamidreza, K.; Earl, H.; Sabzevari, S.; Yanegh, J. Effects of Osmo-Hydropriming and Drought Stress on Seed Germination and Seedling Growth of Rye (Secale Montanum). ProEnviron. Promediu 2013, 6, 496–507. [Google Scholar]
- Soleimanzadeh, H. Effect of seed priming on germination and yield of corn. Int. J. Agric. Crop Sci. 2013, 5, 366–369. [Google Scholar]
- Yanrong, W.; Jianquan, Z.; Huixia, L.; Xiaowen, H. Physiological and ecological responses of alfalfa and milkvetch seed to PEG priming. Acta Ecol. Sin. 2003, 24, 402–408. [Google Scholar]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. New Challenges Seed Biol. Basic Transl. Res. Driv. Seed Technol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Heydecker, W.; Higgins, J.; Gulliver, R.L. Accelerated Germination by Osmotic Seed Treatment. Nature 1973, 246, 42–44. [Google Scholar] [CrossRef]
- Taylor, A.G.; Prusinski, J.; Hill, H.J.; Dickson, M.D. Influence of seed hydration on seedling performance. Horttechnology 1992, 2, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Passam, H.C.; Kakouriotis, D. The effects of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci. Hortic. 1994, 57, 233–240. [Google Scholar] [CrossRef]
- Seyed Sharifi, R.; Khavazi, K. Effects of seed priming with Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield attribute of maize (Zea mays L.) hybrids. J. Food Agric. Environ. J. Food Agric. Environ. 2005, 99, 496–500. [Google Scholar]
- Souza, M.O.; Pelacani, C.R.; Willems, L.A.; Castro, R.D.; Hilhorst, H.W.; Ligterink, W. Effect of osmopriming on germination and initial growth of physalis angulata L. under salt stress and on expression of associated genes. An. Acad. Bras. Cienc. 2016, 88, 503–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Narzary, R. Aquatic insect community of lake, Phulbari anua in Cachar, Assam. J. Environ. Biol. 2013, 34, 591–597. [Google Scholar] [PubMed]
- Matsushima, K.-I.; Sakagami, J.-I. Effects of Seed Hydropriming on Germination and Seedling Vigor during Emergence of Rice under Different Soil Moisture Conditions. Am. J. Plant Sci. 2013, 4, 1584–1593. [Google Scholar] [CrossRef] [Green Version]
- Mehri, S. Effect of Seed Priming on Emergence, Yield and Storability of Soybean. Am. J. Agric. Environ. Sci. 2005, 15, 399–403. [Google Scholar]
- Parera, C.A.; Cantliffe, D.J. Dehydration Rate after Solid Matrix Priming Alters Seed Performance of Shrunken-2 Corn. J. Am. Soc. Hortic. Sci. 1994, 119, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Marwat, K.B.; Khan, M.A.; Arif, M.; Al, E.T. Seed Priming Improves Emergance and Yield of Soybean. Pakistan J. Bot. 2008, 40, 1169–1177. [Google Scholar]
- Kaya, M.D.; Okçu, G.; Atak, M.; Çikili, Y. & Kolsarici, Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar]
- Pazhanisamy, S.; Narayanan, A.; Sridevi, V.; Singh, A.; Singh, A.K. Effect of Seed Priming Practices on Dry Matter Production, Yield and Yield Attributes of Aerobic Rice in Coastal Deltaic Region of Karaiakal. Eur. J. Nutr. Food Saf. 2020, 12, 79–83. [Google Scholar] [CrossRef]
- Ahammad, K.U.; Rahman, M.M.; Ali, M.R. Effect of Hydropriming method on maize (Zea mays) seedling emergence Bangladesh. J. Agric. Res. 2014, 39, 143–150. [Google Scholar]
- Singh, B.G. Effect of hydration-dehydration seed treatments on vigour and yield of sunflower. Indian J. Plant Physiol. 1995, 38, 66–68. [Google Scholar]
- Jamil, M.; Rha, E.S. Gibberellic Acid enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pak J. Biol. Sci. 2007, 10, 654–658. [Google Scholar] [CrossRef]
- Harris, D.; Pathan, A.; Gothkar, P.; Joshi, A.; Chivasa, W.; Nyamudeza, P. On-farm seed priming: Using participatory methods to revive and refine a key technology. Agric. Syst. 2001, 69, 151–164. [Google Scholar] [CrossRef]
- Association of Official Seed Analysis (AOSA). Rules for testing seeds. J. Seed Technol. 1991, 12, 18–19. [Google Scholar]
- Association of Official Seed Analysis (AOSA). Seed Vigor Testing Handbook; Contribution No. 32 to the Handbook on Seed Testing; AOSA: Ithaca, NY, USA, 1983. [Google Scholar]
- Ali, S.A.; Idris, A.Y. Germination and Seedling Growth of Pearl Millet (Pennisetum glaucum L.) Cultivars under Salinity Conditions. Int. J. Plant Sci. Ecol. 2015, 1, 1–5. [Google Scholar]
- Ellis, R.H.; Covell, S.; Roberts, E.H.; Summerfield, R.J. The Influence of Temperature on Seed Germination Rate in Grain Legumes. J. Exp. Bot. 1986, 37, 1503–1515. [Google Scholar] [CrossRef]
- Moradi, A.; Sharif Zadeh, F.; Tavakoli Afshari, R.; Maali Amir, R. The effects of priming and drought stress treatments on some physiological characteristics of tall wheat grass (Agropyron elangatum) seeds. Int. J. Agric. Crop Sci. 2012, 4, 596–603. [Google Scholar]
- Sepehri, A.; Najari, S.; Rouhi, H.R. Seed Priming to Overcome Salinity Stress in Persian Cultivars of Alfalfa (Medicago sativa L.). Not. Sci. Biol. 2015, 7, 96–101. [Google Scholar] [CrossRef]
- AGRA. Catalogue Official des Especes et Varieties, Tome I Cultures Vivrieres; AGRA: Rome, Italy, 2013. [Google Scholar]
- Dembélé, S. Rapport D’activites; Agricultural Reseach Station of Cinzana, Cinzana, Mali, 2015. Unpublished.
- Basra, S.; Farooq, M.; Tabassam, R.; Ahmad, N. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 2005, 33, 623–628. [Google Scholar] [CrossRef]
- Nelson, L.R.; Hsu, K.H. Effects of Leachate Accumulation During Hydration in a Thermalscrew Blancher on the Water Absorption and Cooked Texture of Navy Beans. J. Food Sci. 1985, 50, 782–788. [Google Scholar] [CrossRef]
- Dezfuli, P.M.; Sharif-Zadeh, F.; Janmohammadi, M. Influence of Priming Techniques on Seed Germination Behavior of Maize inbred lineS (Zea mays L.). ARPN J. Agric. Biol. Sci. 2008, 3, 22–25. [Google Scholar]
- Duzgunes, O.; Kesici, T.; Gurbuz, F. Statistical Methods I; Ankara University, Agricultural Engineering Faculty Press: Ankara, Turkey, 1983; 229p. [Google Scholar]
- Shaban, M. Effect of water and temperature on seed germination and emergence as a seed hydrothermal time model. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1686–1691. [Google Scholar]
- Ghassemi-Golezani, K.; Chadordooz-Jeddi, A.; Zafarani-Moattar, P. Influence of salt-priming on mucilage yield of Isabgol (Plantago ovata Forsk) under salinity stress. J. Med. Plants Res. 2011, 5, 3236–3241. [Google Scholar]
- Nikanorov, A.M.; Brazhnikova, L.V. Water Chemical Composition of rivers, Lakes and Wetlands. Types Prop. Water 2009, 2, 42–80. [Google Scholar]
- Imtiaz Sudozai, M.; Tunio, S.; Rajpar, I. Seedling Establishment and Yield of Maize under Different SEed Priming Periods and available soil moisture. Sarhad J. Agric. 2013, 29, 515–528. [Google Scholar]
- Nakaune, M.; Tsukazawa, K.; Uga, H.; Asamizu, E.; Imanishi, S.; Matsukura, C.; Ezura, H. Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato. Plant Biotechnol. 2012, 29, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Tekle, A.T.; Alemu, M.A. Drought Tolerance Mechanisms in Field Crop s. World J. Biol. Med. Sci. 2016, 3, 15–39. [Google Scholar]
- Farahani, H.A.; Moaveni, P.; Maroufi, K. Effect of thermopriming on germination of cowpea (Vigna sinensis L.). Adv. Environ. Biol. 2011, 5, 1668–1674. [Google Scholar]
- Carter, M.R.; Sanderson, J.B.; MacLeod, J.A. Influence of compost on the physical properties and organic matter fractions of a fine sandy loam throughout the cycle of a potato rotation. Can. J. Soil Sci. 2004, 84, 211–218. [Google Scholar] [CrossRef]
- Koller, D.; Hadas, A. Water Relations in the Germination of Seeds. In Physiological Plant Ecology II; Springer: Berlin/Heidelberg, Germany, 1982; pp. 401–431. [Google Scholar]
- Murungu, F.; Chiduza, C.; Nyamugafata, P.; Clark, L.; Whalley, W.; Finch-Savage, W. Effects of ‘on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop. Res. 2004, 89, 49–57. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Kibite, S.; Harker, K.N. Effects of seed hydration on agronomic performance of wheat, barley and oats in central Alberta. Can. J. Plant Sci. 1991, 71, 515–518. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-priming Effects on Seed Germination and Field Performance of Faba Bean in Spring Sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
Sorghum Variety | Sorghum Cultivars | Days to Mature | Overall Cultivar Type | Optimum Rainfall Requirement (mm) | Source |
---|---|---|---|---|---|
Banidoka | Guinea | 120 | Land race | 600–800 | Farmer |
CSM63E | Guinea | 100 | Cultivar | 400–700 | IER |
Nieleni | Caudatum-Guinea | 110 | Hybrid | 700–1000 | IER |
Saba-soto | Caudatum | 100 | Land race | * Receding flood | Farmer |
Saba-tienda | Durra | 90 | Land race | * Receding flood | Farmer |
Seguifa | Durra | 100 | Cultivar | 400–700 | IER |
Sewa | Caudatum-Guinea | 110 | Hybrid | 800–1000 | IER |
Tiandougou | Guinea | 120 | Cultivar | 800–1000 | IER |
Tiandougou-coura | Caudatum-Guinea | 120 | Cultivar | 800–1000 | IER |
Water Sources | Duration (min.) of Seed Submergence in Hot Water at 70 °C | Duration (min.) of Seed Submergence in Water at Room Temperature (25 °C) | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 240 | 480 | 720 | |
Distilled | X | X | X | X | X | X | X |
Rain | X | X | X | X | X | X | X |
River | X | X | X | X | X | X | X |
Tap | X | X | X | X | X | X | X |
Well | X | X | X | X | X | X | X |
Assessment Parameter | Abbreviation | Calculation Base | Explanation of Assessment Parameter | Source |
---|---|---|---|---|
Germination Percentage | GP (%) | GP = (Number of seeds germinated)/(number of seeds sown) × 100 | (Number of total seeds germinated over the number of total seeds sown time hundred). | [23] |
Mean Germination Time | MGT (Days) | MGT = (∑(Dn)/(∑n) | n is the number of seeds germinated on each day counted, whilst D is the day of counting n. | [26] |
Root Vigor Index | RVI | RVI = RL × GP | RL is the root length (cm), and GP is the germination percentage. | |
Germination Rate Index | GRI (%/day) | GRI = ∑(GP1 + GP2…GPn)/n | Summation of the germination percentage at each day (GP) divided by the total days (n) of germination. | [32] |
Seedling Dry Weight | SDW (g/plant) | Dry samples weighted and expressed in g. | Weight determined after drying seedling samples at 105 °C for 24 h. | [33] |
Parameters | Distilled | Rain | River | Tap | Well |
---|---|---|---|---|---|
pH | 6.7 | 6.7 | 7.7 | 6.5 | 7.2 |
EC (25 °C) µS cm−1 | 6.5 | 9.5 | 87.5 | 40.5 | 181.5 |
Hardness (mg/L) | 3.5 | 5 | 38 | 18 | 63 |
CaCO3 (mg/L) | 2.0 | 3.5 | 38.5 | 16.0 | 63.5 |
TDS (105 °C) (mg/L) | 8.9 | 13.0 | 82.9 | 61.6 | 139.7 |
Calcium, Ca2+ (mg/L) | 0.5 | 0.5 | 8.5 | 2.8 | 17.5 |
Magnesium, Mg2+ (mg/L) | 1.0 | 0.9 | 4.1 | 2.6 | 4.7 |
Sodium, Na+ (mg/L) | 0.2 | 0.2 | 3.4 | 3.3 | 7.3 |
Potassium, K+ (mg/L) | 0.3 | 0.7 | 2.7 | 1.4 | 8.3 |
Bicarbonates, HCO3 (mg/L) | 2.6 | 4.4 | 46.9 | 19.1 | 77.5 |
Sulphates, SO4 2− (mg/L) | 0.6 | 0.9 | 5.2 | 3.4 | 2.3 |
Chlorine, Cl− (mg/L) | 0.3 | 0.3 | 2.5 | 2.6 | 1.9 |
Nitrates, NO3- (mg/L) | 0.1 | 0.1 | 0.9 | 1.2 | 0.6 |
Copper, Cu2+ (mg/L) | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
Zinc, Zn (mg/L) | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
Treatments | Assessment Parameters | ||||
---|---|---|---|---|---|
Variety | GP | MGT | GRI | RVI | SDW |
Banidoka | 99.0 ± 1.12 | 4.6 ± 0.02 | 96.2 ± 1.23 | 532.7 ± 15.30 | 0.13 ± 0.01 |
CSM63E | 99.2 ± 1.12 | 4.5 ± 0.02 | 98.5 ± 1.23 | 436.0 ± 18.90 | 0.12 ± 0.01 |
Nieleni | 87.2 ± 1.12 | 4.6 ± 0.02 | 84.0 ± 1.23 | 268.2 ± 18.43 | 0.07 ± 0.01 |
Saba-soto | 82.1 ± 1.12 | 4.7 ± 0.02 | 78.3 ± 1.23 | 230.1 ± 19.07 | 0.10 ± 0.01 |
Saba-tienda | 94.8 ± 1.12 | 4.6 ± 0.02 | 92.5 ± 1.23 | 467.1 ± 18.40 | 0.10 ± 0.01 |
Seguifa | 94.8 ± 1.12 | 4.6 ± 0.02 | 91.6 ± 1.23 | 455.6 ± 18.76 | 0.11 ± 0.01 |
Sewa | 84.9 ± 1.12 | 4.6 ± 0.02 | 81.8 ± 1.23 | 293.8 ± 18.31 | 0.08 ± 0.01 |
Tiandougou | 91.6 ± 1.12 | 4.6 ± 0.02 | 89.1 ± 1.23 | 363.0 ± 18.90 | 0.09 ± 0.01 |
Tiandougou-coura | 85.2 ± 1.12 | 4.7 ± 0.02 | 81.1 ± 1.23 | 186.4 ± 19.60 | 0.07 ± 0.01 |
p-values | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
LSD | 2.50 | 0.04 | 2.90 | 63.20 | 0.01 |
Water sources | |||||
Control | 91.0 ± 0.92 | 4.7 ± 0.01 | 85.1 ± 1.01 | 278.1 ± 16.90 | 0.08 ± 0.01 |
Distilled | 90.1 ± 0.,92 | 4.6 ± 0.01 | 87.6 ± 1.01 | 402.5 ± 14.70 | 0.10 ± 0.01 |
Rain | 90.1 ± 0.92 | 4.6 ± 0.01 | 88.1 ± 1.01 | 288.0 ± 16.55 | 0.08 ± 0.01 |
River | 91.2 ± 0.92 | 4.6 ± 0.01 | 89.2 ± 1.01 | 434.2 ± 13.95 | 0.10 ± 0.01 |
Tap | 91.0 ± 0.92 | 4.6 ± 0.01 | 89.6 ± 1.01 | 351.2 ± 13.90 | 0.10 ± 0.01 |
Well | 91.6 ± 0.92 | 4.6 ± 0.01 | 89.2 ± 1.01 | 401.2 ± 14.41 | 0.11 ± 0.01 |
p-values | 0.40 | <0.01 | <0.01 | <0.01 | <0.01 |
LSD | 0.03 | 2.30 | 51.60 | 0.01 | |
Priming duration (h) | |||||
4 | 90.7 ± 0.92 | 4.6 ± 0.01 | 87.0 ± 1.01 | 306.8 ± 13.21 | 0.08 ± 0.01 |
8 | 90.7 ± 0.92 | 4.6 ± 0.01 | 87.8 ± 1.01 | 352.9 ± 12 13 | 0.11± 0.01 |
12 | 91.5 ± 0.92 | 4.5 ± 0.01 | 89.6 ± 1.01 | 426.2 ± 12.47 | 0.10 ± 0.01 |
p-values | 0.40 | <0.01 | <0.01 | <0.01 | <0.01 |
LSD | 0.02 | 1.70 | 36.50 | 0.01 | |
p-values for variety × water sources | 1.00 | 1.00 | 1.00 | 0.99 | 0.18 |
p-values for variety × duration | 0.80 | 0.70 | 0.90 | 0.57 | 0.05 |
p-values for water × duration | 0.50 | 0.90 | 0.50 | 0.04 | 0.23 |
p-values for variety × water × duration | 1.00 | 1.00 | 0.28 | 0.99 | 0.54 |
Water Sources | Priming Duration (h) | Mean RVI for Water Sources | ||
---|---|---|---|---|
4 | 8 | 12 | ||
Control | 188.3 ± 13.21 | 277.8 ± 12.96 | 368.2 ± 12.47 | 278.1 |
Distilled | 362.7 ± 13.21 | 375.4 ± 12.96 | 469.4 ± 12.47 | 402.5 |
Rain | 286.7 ± 13.21 | 267.9 ± 12.96 | 309.5 ± 12.47 | 288.0 |
River | 400.7 ± 13.21 | 395.5 ± 12.96 | 506.4 ± 12.47 | 434.2 |
Tap | 292.2 ± 13.21 | 398.0 ± 12.96 | 363.3 ± 12.47 | 351.2 |
Well | 300.8 ± 13.21 | 382.2 ± 12.96 | 520.5 ± 12.47 | 401.2 |
Mean RVI for priming duration | 305.2 | 349.5 | 422.9 | |
p-value | SED | LSD | ||
Water sources | <0.01 | 26.3 | 51.6 | |
Priming duration | <0.01 | 18.6 | 36.5 | |
Water sources × priming duration | 0.04 | 45.5 | 89.3 |
Priming Duration (h) | Mean SDW for Varieties | |||
---|---|---|---|---|
Variety | 4 | 8 | 12 | |
Banidoka | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.13 |
CSM63E | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.12 |
Nieleni | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.07 |
Saba-soto | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.08 ± 0.01 | 0.10 |
Saba-tienda | 0.08 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.10 |
Seguifa | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.11 |
Sewa | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.07 ± 0.01 | 0.08 |
Tiandougou | 0.07 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.09 |
Tiandougou-coura | 0.05 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.07 |
Mean SDW for priming duration | 0.08 | 0.11 | 0.10 | |
p-value | SED | LSD | ||
Varieties | <0.01 | 0.01 | 0.01 | |
Priming duration | <0.01 | 0.01 | 0.01 | |
Varieties × priming duration | 0.05 | 0.01 | 0.02 |
Treatments | Growth Parameters | ||||
---|---|---|---|---|---|
Variety | GP | MGT | GRI | RVI | SDW |
Banidoka | 98.3 ± 1.12 | 4.5 ± 0.02 | 488.3 ± 1.23 | 226.0 ± 15.30 | 0.10 ± 0.01 |
CSM63E | 98.3 ± 1.12 | 4.5 ± 0.02 | 485.6 ± 1.23 | 292.7 ± 18.90 | 0.07 ± 0.01 |
Nieleni | 83.2 ± 1.12 | 4.6 ± 0.02 | 427.3 ± 1.23 | 130.9 ± 18.43 | 0.06 ± 0.01 |
Saba-soto | 77.8 ± 1.12 | 4.7 ± 0.02 | 457.0 ± 1.23 | 80.6 ± 19.07 | 0.06 ± 0.01 |
Saba-tienda | 90.9 ± 1.12 | 4.5 ± 0.02 | 426.7 ± 1.23 | 219.5 ± 18.40 | 0.05 ± 0.01 |
Seguifa | 92.1 ± 1.12 | 4.6 ± 0.02 | 454.1 ± 1.23 | 168.2 ± 18.76 | 0.06 ± 0.01 |
Sewa | 85.4 ± 1.12 | 4.6 ± 0.02 | 460.0 ± 1.23 | 128.5 ± 18.31 | 0.06 ± 0.01 |
Tiandougou | 78.7 ± 1.12 | 4.6 ± 0.02 | 438.0 ± 1.23 | 79.4 ± 18.90 | 0.03 ± 0.01 |
Tiandougou-coura | 78.2 ± 1.12 | 4.6 ± 0.02 | 461.2 ± 1.23 | 63.0 ± 18.60 | 0.03 ± 0.01 |
p-values | <0.01 | <0.01 | 0.96 | <0.01 | <0.01 |
LSD | 4.1 | 0.03 | 111.5 | 48.8 | 0.01 |
Water sources | |||||
Control | 91.6 ± 0.92 | 4.6 ± 0.01 | 451.5 ± 0.01 | 122.7 ± 16.90 | 0.04 ± 0.01 |
Distilled | 86.0 ± 0.92 | 4.6 ± 0.01 | 456.6 ± 0.01 | 158.3 ± 14.70 | 0.06 ± 0.01 |
Rain | 81.5 ± 0.92 | 4.6 ± 0.01 | 449.4 ± 0.01 | 109.3 ± 16.55 | 0.05 ± 0.01 |
River | 85.8 ± 0.92 | 4.6 ± 0.01 | 453.9 ± 0.01 | 185.3 ± 13.95 | 0.07 ± 0.01 |
Tap | 87.6 ± 0.92 | 4.6 ± 0.01 | 458.1 ± 0.01 | 181.9 ± 13.90 | 0.07 ± 0.01 |
Well | 89.5 ± 0.92 | 4.6 ± 0.01 | 462.8 ± 0.01 | 168.4 ± 16.40 | 0.06 ± 0.01 |
p-values | <0.01 | 0.80 | 1.00 | <0.01 | <0.01 |
LSD | 3.3 | 0.03 | 91.0 | 39.9 | 0.01 |
Priming duration (min.) | |||||
10 | 87.3 ± 0.92 | 4.6 ± 0.01 | 449.4 ± 0.01 | 101.9 ± 13.21 | 0.05 ± 0.01 |
20 | 87.1 ± 0.92 | 4.6 ± 0.01 | 459.2 ± 0.01 | 170.7 ± 12.13 | 0.06 ± 0.01 |
30 | 86.6 ± 0.92 | 4.6 ± 0.01 | 457.5 ± 0.01 | 190.3 ± 12.47 | 0.06 ± 0.01 |
p-values | 0.83 | 0.33 | 0.95 | <0.01 | 0.01 |
LSD | 2.4 | 0.02 | 64.4 | 28.2 | 0.01 |
Growth Parameters | ||||||
---|---|---|---|---|---|---|
Treatments Variety | GP | MGT | GRI | SVI | RVI | SDW |
Banidoka | 98.3 ± 1.12 | 4.5 ± 0.02 | 488.3 ± 1.23 | 537.0 ± 24.23 | 226.0 ± 15.30 | 0.10 ± 0.01 |
CSM63E | 98.3 ± 1.12 | 4.5 ± 0.02 | 485.6 ± 1.23 | 582.0 ± 30.03 | 292.7 ± 18.90 | 0.07 ± 0.01 |
Nieleni | 83.2 ± 1.12 | 4.6 ± 0.02 | 427.3 ± 1.23 | 267.9 ± 29.30 | 130.9 ± 18.43 | 0.06 ± 0.01 |
Saba-soto | 77.8 ± 1.12 | 4.7 ± 0.02 | 457.0 ± 1.23 | 210.0 ± 30.29 | 80.6 ± 19.07 | 0.06 ± 0.01 |
Saba-tienda | 90.9 ± 1.12 | 4.5 ± 0.02 | 426.7 ± 1.23 | 423.5 ± 29.16 | 219.5 ± 18.40 | 0.05 ± 0.01 |
Seguifa | 92.1 ± 1.12 | 4.6 ± 0.02 | 454.1 ± 1.23 | 306.9 26.62 | 168.2 ± 18.76 | 0.06 ± 0.01 |
Sewa | 85.4 ± 1.12 | 4.6 ± 0.02 | 460.0 ± 1.23 | 268.9 ± 28.94 | 128.5 ± 18.31 | 0.06 ± 0.01 |
Tiandougou | 78.7 ± 1.12 | 4.6 ± 0.02 | 438.0 ± 1.23 | 158.1 ± 32.60 | 79.4 ± 18.90 | 0.03 ± 0.01 |
Tiandougou-coura | 78.2 ± 1.12 | 4.6 ± 0.02 | 461.2 ± 1.23 | 147.3 ± 33.80 | 63.0 ± 18.60 | 0.03 ± 0.01 |
p-values | <0.01 | <0.01 | 0.96 | <0.01 | <0.01 | <0.01 |
LSD | 4.1 | 0.03 | 111.5 | 92.6 | 48.8 | 0.01 |
Water sources | ||||||
Control | 91.6 ± 0.92 | 4.6 ± 0.01 | 451.5 ± 0.01 | 237.2 ± 26.32 | 122.7 ± 16.90 | 0.04 ± 0.01 |
Distilled | 86.0 ± 0.92 | 4.6 ± 0.01 | 456.6 ± 0.01 | 343.9 ± 23.29 | 158.3 ± 14.70 | 0.06 ± 0.01 |
Rain | 81.5 ± 0.92 | 4.6 ± 0.01 | 449.4 ± 0.01 | 239.6 ± 25.92 | 109.3 ± 16.55 | 0.05 ± 0.01 |
River | 85.8 ± 0.92 | 4.6 ± 0.01 | 453.9 ± 0.01 | 397.6 ± 22.32 | 185.3± 13.95 | 0.07 ± 0.01 |
Tap | 87.6 ± 0.92 | 4.6 ± 0.01 | 458.1 ± 0.01 | 374.2 ± 21.99 | 181.9 ± 13.90 | 0.07 ± 0.01 |
Well | 89.5 ± 0.92 | 4.6 ± 0.01 | 462.8 ± 0.01 | 342.0 ± 22.39 | 168.4 ± 16.40 | 0.06 ± 0.01 |
p-values | <0.01 | 0.80 | 1.00 | <0.01 | <0.01 | <0.01 |
LSD | 3.3 | 0.03 | 91.0 | 75.6 | 39.9 | 0.01 |
Priming duration (min.) | ||||||
10 | 87.3 ± 0.92 | 4.6 ± 0.01 | 449.4 ± 0.01 | 206.3 ± 28.32 | 101.9 ± 13.21 | 0.05 ± 0.01 |
20 | 87.1 ± 0.92 | 4.6 ± 0.01 | 459.2 ± 0.01 | 350.6 ± 24.32 | 170.7 ± 12.13 | 0.06 ± 0.01 |
30 | 86.6 ± 0.92 | 4.6 ± 0.01 | 457.5 ± 0.01 | 410.3 ± 25.32 | 190.3 ± 12.47 | 0.06 ± 0.01 |
p-values | 0.83 | 0.33 | 0.95 | <0.01 | <0.01 | 0.01 |
LSD | 2.4 | 0.02 | 64.4 | 53.4 | 28.2 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembélé, S.; Zougmoré, R.B.; Coulibaly, A.; Lamers, J.P.A.; Tetteh, J.P. Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming. Atmosphere 2021, 12, 419. https://doi.org/10.3390/atmos12040419
Dembélé S, Zougmoré RB, Coulibaly A, Lamers JPA, Tetteh JP. Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming. Atmosphere. 2021; 12(4):419. https://doi.org/10.3390/atmos12040419
Chicago/Turabian StyleDembélé, Siaka, Robert B. Zougmoré, Adama Coulibaly, John P. A. Lamers, and Jonathan P. Tetteh. 2021. "Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming" Atmosphere 12, no. 4: 419. https://doi.org/10.3390/atmos12040419
APA StyleDembélé, S., Zougmoré, R. B., Coulibaly, A., Lamers, J. P. A., & Tetteh, J. P. (2021). Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming. Atmosphere, 12(4), 419. https://doi.org/10.3390/atmos12040419