Effects of Recent Climate Change on Maize Yield in Southwest Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Simulation Units
2.2. Climate and Soil Data
2.3. Climate Change Analysis
2.4. Crop Model Description
2.5. Crop Model Calibration
2.6. Crop Model Validation at Regional Scale
2.7. Simulations at Different Nitrogen Application Levels
2.8. Statistical Tools Used
2.8.1. Accuracy of the Model
2.8.2. Analysis of the Trend of Simulated Yields
2.8.3. Effects on the Growing Period Length
3. Results
3.1. Climate Change Evaluation
3.1.1. Guayas
3.1.2. Los Rios
3.1.3. Loja
3.1.4. Manabi
3.1.5. Spatial Variability
3.2. Calibration and Validation of the Model
3.3. Climate Change Effects over Maize Yield
3.4. Climate Change Effects on the Phenology
4. Discussion
4.1. Climate Change
4.2. Effects of Climate Change over Maize Yield
4.3. Climate Change Effects on Phenology
4.4. Uncertainties of the Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Mann–Kendall Trend Test
- The data must be sorted in the order in which they were collected over time, , which denote the measurements obtained at times , respectively.
- Determine the sign of all possible differences , where . These differences are .
- Let be an indicator function that takes on the values 1, 0, or according to the sign of , that is,
Appendix B. Climate Parameters in Guayas, Los Rios, Loja and Manabi
Appendix B.1. Guayas
Appendix B.2. Los Rios
Appendix B.3. Loja
Appendix B.4. Manabi
References
- World-Bank. Agriculture, Forestry, and Fishing, Value Added (% of GDP)\Data. 2020. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS (accessed on 25 February 2020).
- MAG. General Information of Agriculture-Ecuador. 2020. Available online: https://www.g-fras.org/en/world-wide-extension-study/south-america/south-america/ecuador.html (accessed on 25 February 2020).
- IPCC. Chapter: Central and South America. In AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability; 2014; p. 68. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 25 February 2020).
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966–2011). Int. J. Climatol. 2016, 36, 3839–3855. [Google Scholar] [CrossRef] [Green Version]
- Burke, E.; Goldenson, N.; Moon, T.; Po-Chedley, S. Climate and Climate Change in Ecuador: An Overview. Atmos. Sci. 2009, 57. [Google Scholar]
- Ontaneda, G.; Caceres, L.; Mejia, R. Evidencias del Cambio Climático en Ecuador. Bulletin de l’Institut Français D’études Andines 1998, 27. [Google Scholar]
- Prăvălie, R. Recent changes in global drylands_ Evidences from two major aridity databases. Catena 2019, 178, 209–231. [Google Scholar] [CrossRef]
- FAO. Trees, Forests and Land Use in Drylands: The First Global Assessment—Full Report. Technical Report. 2019. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj7hsKkn4fvAhWrIqYKHSo_DIgQFjAAegQIAhAD&url=http%3A%2F%2Fwww.fao.org%2F3%2Fca7148en%2Fca7148en.pdf&usg=AOvVaw16GV9LfxEo9eAfZTGgL6Nh (accessed on 25 February 2020).
- Fries, A.; Silva, K.; Pucha-Cofrep, F.; Oñate-Valdivieso, F.; Ochoa-Cueva, P. Water Balance and Soil Moisture Deficit of Different Vegetation Units under Semiarid Conditions in the Andes of Southern Ecuador. Climate 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Skarbø, K.; VanderMolen, K. Maize migration: Key crop expands to higher altitudes under climate change in the Andes. Clim. Dev. 2016, 8, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Carvajal Calderón, M. Impactos de la Variabilidad y el Cambio Climático Sobre el Cultivo de Banano (Musa Spp) en Tres Países Productores de América Latina. Bachelor Thesis, University Autónoma De Occidente, Cali, Colombia, 2016. [Google Scholar]
- MAG. Rendimiento Informe de Maíz 2019. 2019. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwis88HXn4fvAhUKyosBHU-_CxwQFjAAegQIARAD&url=http%3A%2F%2Fwww.mag.go.cr%2Fbibliotecavirtual%2FF01-4042.pdf&usg=AOvVaw3lDBh5aDKFrJoKcccgcUCL (accessed on 25 February 2020).
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INEC. Features of Provinces in Ecuador. 2019. Available online: https://www.inec.cr/ (accessed on 25 February 2020).
- Climate-Data.org. Clima Guayas: Temperatura, Climograma y Tabla Climática Para Guayas—Climate-Data.Org. 2019. Available online: https://es.climate-data.org/america-del-sur/ecuador/provincia-del-guayas/guayaquil-2962/ (accessed on 25 February 2020).
- Moreno, J.; Sevillano, G.; Valverde, O.; Loayza, V.; Haro, R.; Zambrano, J. Soil from the Coastal Plane. In The Soils of Ecuador; World Soils Book Series; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Eglitis-Media. Climate in Manabí, Ecuador. 2020. Available online: https://www.worlddata.info/america/ecuador/climate-manabi.php (accessed on 25 February 2020).
- Moreno, J.; Bernal, G.; Espinoza, J. Introduction. In The Soils of Ecuador; World Soils Book Series; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Climate-Data.org. Clima Los Rios: Temperatura, Climograma y Tabla Climática Para Guayas—Climate-Data.org. 2019. Available online: https://es.climate-data.org/america-del-sur/ecuador-63/ (accessed on 25 February 2020).
- Climate-Data.org. Clima Loja: Temperatura, Climograma y Tabla climática para Guayas—Climate-Data.org. 2019. Available online: https://es.climate-data.org/america-del-sur/ecuador-63/ (accessed on 25 February 2020).
- NASA POWER. POWER Data Access Viewer; 2020. Available online: https://power.larc.nasa.gov/ (accessed on 25 February 2020).
- Stackhouse, P.W.; Zhang, T.; Westberg, D.; Barnett, A.J.; Bristow, T.; Macpherson, B.; Hoell, J.M. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation) Documentation Date December 12, 2018 (All previous versions are obsolete) (Data Version 8.0.1; Web Site Version 1.1.0); 2018; p. 99. Available online: https://power.larc.nasa.gov/documents/POWER_Data_v8_methodology.pdf (accessed on 25 February 2020).
- ISRIC. SoilGrids—Global Gridded Soil Information. 2020. Available online: https://www.isric.org/explore/soilgrids (accessed on 25 February 2020).
- Rawls, W.; Ahuja, L.; Maidment, D. Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Atta-ur-Rahman; Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Shibu, M.; Leffelaar, P.; van Keulen, H.; Aggarwal, P. LINTUL3, a simulation model for nitrogen-limited situations: Application to rice. Eur. J. Agron. 2010, 32, 255–271. [Google Scholar] [CrossRef]
- Wolf, J. LINTUL5: Simple Generic Model for Simulation of Crop Growth under Potential, Water Limited and Nitrogen, Phosphorus and Potassium Limited Conditions; Technical Report; Wageningen UR: Wageningen, The Netherlands, 2012. [Google Scholar]
- Srivastava, A.K.; Ceglar, A.; Zeng, W.; Gaiser, T.; Mboh, C.M.; Ewert, F. The Implication of Different Sets of Climate Variables on Regional Maize Yield Simulations. Atmosphere 2020, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordóñez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. Modelling the impact of heat stress on maize yield formation. Field Crops Res. 2016, 198, 226–237. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Gaiser, T.; Paeth, H.; Ewert, F. The impact of climate change on Yam (Dioscorea alata) yield in the savanna zone of West Africa. Agric. Ecosyst. Environ. 2012, 153, 57–64. [Google Scholar] [CrossRef]
- SIMPLACE. SlimWater Simplace Documentation. 2019. Available online: https://simplace.ipf.uni-bonn.de/doc/4.2/simplace_run/class_net.simplace.usermodules.thomas.SlimWater.html (accessed on 25 February 2020).
- SIMPLACE. SoilCN Simplace Documentation. 2019. Available online: https://simplace.net/doc/simplace_modules/class_net.simplace.sim.components.soil.soilcn.SoilCN.html (accessed on 25 February 2020).
- Campuzano, M. Evaluación del Comportamiento Agronómico de dos Híbridosexperimentales Promisorio de Maíz en Tres Localidades del Litoralecuatoriano y Una en los Valles sub Tropicales de la Provincia de Loja. Bachelor Thesis, Universidad Técnica de Babahoyo, Babahoyo, Ecuador, 2019. [Google Scholar]
- Toledo Ronquillo, B. Evaluación Agronómica de dos Híbridos de Maíz (Zea Mays L.) en Condición de Siembras Comerciales, en la Granja Experimental “Limoncito”, en época Lluviosa. Bachelor Thesis, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador, 2017. [Google Scholar]
- Bayas Silva, M.; Castillo Vera, H. Determinación de la Respuesta de Cuatro Enraizantes Aplicados Sobre la Semilla de Maíz (Zea Maíz) del Hibrido Dekalb 7088 en época Lluviosa en la Zona de Febres Cordero—Los Ríos. Bachelor Thesis, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador, 2014. [Google Scholar]
- Boogaard, H.L.; Diepen, C.A.v.; Rotter, R.P.; Cabrera, J.M.C.A.; Laar, H.H.v. WOFOST 7.1; User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Technical Report 52; SC-DLO: Wageningen, The Netherlands, 1998. [Google Scholar]
- Borbor-Cordova, M.J.; Boyer, E.W.; McDowell, W.H.; Hall, C.A. Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 2006, 79, 135–161. [Google Scholar] [CrossRef]
- MAG. Reports of Maize Yield in Ecuador. 2019. Available online: https://www.statista.com/statistics/955406/ecuador-corn-production-volume/ (accessed on 25 February 2020).
- MAG. Technical Report of Maize (Zea Mays L.) Crop in Ecuador. 2020. Available online: https://www.statista.com/statistics/955406/ecuador-corn-production-volume/ (accessed on 25 February 2020).
- Vicente-Serrano, S.M.; Aguilar, E.; Martínez, R.; Martín-Hernández, N.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; El Kenawy, A.; Tomás-Burguera, M.; Moran-Tejeda, E.; López-Moreno, J.I.; et al. The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 2017, 48, 405–427. [Google Scholar] [CrossRef] [Green Version]
- Piana, M. Hadley Cells. 2020. Available online: https://www.seas.harvard.edu/climate/eli/research/equable/hadley2.html (accessed on 25 February 2020).
- NOAA. What is El Niño?\El Nino Theme Page—A Comprehensive Resource; 2020. Available online: https://www.pmel.noaa.gov/elnino/ (accessed on 25 February 2020).
- ENFEN. Definición Operacional de los Eventos El Niño y La Niña y Sus Magnitudes en la Costa del Peru. Technical Report. 2012. Available online: https://www.dhn.mil.pe/nota_tecnica_enfen (accessed on 25 February 2020).
- NOAA. What is La Niña?\El Nino Theme Page—A Comprehensive Resource; 2020. Available online: https://www.pmel.noaa.gov/elnino/what-is-la-nina (accessed on 25 February 2020).
- OCHA. Ecuador El Niño Floods Situation Report No. 6—Ecuador. 1998. Available online: https://reliefweb.int/report/ecuador/ecuador-el-ni%C3%B1o-floods-situation-report-no-6 (accessed on 25 February 2020).
- NOAA. NOAA’s Climate Prediction Center; 2020. Available online: https://www.cpc.ncep.noaa.gov/ (accessed on 25 February 2020).
- Rollenbeck, R.; Bendix, J. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res. 2011, 99, 277–289. [Google Scholar] [CrossRef]
- World-Bank. Vulnerability, Risk Reduction, and Adaptation to Climate Change ECUADOR. Technical Report. 2011. Available online: https://openknowledge.worldbank.org/handle/10986/12744 (accessed on 25 February 2020).
- Tobar, V.; Wyseure, G. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. Int. J. Climatol. 2018, 38, 1808–1819. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Hou, P.; Liu, G.; Liu, W.; Wang, Y.; Zhao, R.; Ming, B.; Xie, R.; Wang, K.; et al. Improving maize grain yield by matching maize growth and solar radiation. Sci. Rep. 2019, 9, 3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Du, Q.; Liu, X.; Zhou, L.; Hussain, S.; Lei, L.; Song, C.; Wang, X.; Liu, W.; Yang, F.; et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, E.C.; Rogers, J.S. Heat Units as a Method of Measuring Maturity in Corn1. Agron. J. 1958, 50, 611–615. [Google Scholar] [CrossRef]
- Tollenaar, M.; Daynard, T.B.; Hunter, R.B. Effect of Temperature on Rate of Leaf Appearance and Flowering Date in Maize1. Crop Sci. 1979, 19. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Chen, Y.Q.; Li, C.; Zou, J.X.; Yan, P.; Yuan, S.F.; Wu, X.; Sui, P. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain—A review. J. Integr. Agric. 2016, 15, 2677–2687. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Kolem, H.B.; Srivastava, A.K.; Gaiser, T.; Ewert, F. A Model-Based Estimation of Resource Use Efficiencies in Maize Production in Nigeria. Sustainability 2019, 11, 5114. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Mboh, C.M.; Gaiser, T.; Kuhn, A.; Ermias, E.; Ewert, F. Effect of mineral fertilizer on rain water and radiation use efficiencies for maize yield and stover biomass productivity in Ethiopia. Agric. Syst. 2019, 168, 88–100. [Google Scholar] [CrossRef]
- Shi, W.; Tao, F. Vulnerability of African maize yield to climate change and variability during 1961–2010. Food Secur. 2014, 6, 471–481. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F.; McMillan, A.M.S. Warming and Elevated CO2 Have Opposing Influences on Transpiration. Which is more Important? Curr. For. Rep. 2018, 4, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Stuart Chapin, F. 16—Functional Role of Growth Forms in Ecosystem and Global Processes. In Scaling Physiological Processes; Ehleringer, J.R., Field, C.B., Eds.; Physiological Ecology; Academic Press: San Diego, CA, USA, 1993; pp. 287–312. [Google Scholar] [CrossRef]
- Parry, M. Climate Change and World Agriculture; Earthscan Publications: London, UK, 1990. [Google Scholar]
- Reddy, P.P. Climate Resilient Agriculture for Ensuring Food Security; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Vrieling, A.; de Leeuw, J.; Said, M. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series. Remote Sens. 2013, 5, 982–1000. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, USA, 1987. [Google Scholar]
Year | Guayas | Los Rios | Loja | Manabi |
---|---|---|---|---|
2002 | 46 | 46 | 46 | 46 |
2003 | 46 | 46 | 46 | 46 |
2004 | 46 | 46 | 46 | 46 |
2005 | 46 | 46 | 46 | 46 |
2006 | 46 | 46 | 46 | 46 |
2007 | 46 | 46 | 46 | 46 |
2008 | 46 | 46 | 46 | 46 |
2009 | 46 | 46 | 46 | 46 |
2010 | 46 | 46 | 46 | 46 |
2011 | 46 | 46 | 46 | 46 |
2012 | 110 | 150 | 80 | 100 |
2013 | 110 | 150 | 80 | 100 |
2014 | 120 | 120 | 80 | 70 |
2015 | 110 | 150 | 100 | 90 |
2016 | 110 | 130 | 140 | 110 |
2017 | 100 | 190 | 130 | 130 |
2018 | 100 | 140 | 110 | 120 |
T max | T min | Precipitation | Wind Speed | Radiation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C year | C year | mm year | m s year | MJ m year | ||||||
FY | GP | FY | GP | FY | GP | FY | GP | FY | GP | |
Guayas | +0.04 | ns | +0.03 | +0.03 | ns | ns | ns | ns | ns | ns |
Los Rios | +0.04 | +0.03 | +0.03 | +0.03 | ns | ns | ns | ns | ns | −0.05 |
Loja | +0.04 | +0.05 | +0.03 | +0.03 | −0.02 | −0.05 | ns | ns | ns | ns |
Manabi | +0.03 | ns | +0.03 | +0.03 | ns | ns | ns | ns | −0.06 | ns |
Crop Parameters | Description | Unit | EMBLEMA | DK7088 | TRUENO |
---|---|---|---|---|---|
TSUM1 | T sum from emergence to anthesis | C day−1 | 1010 | 720 | 990 |
TSUM2 | T sum from anthesis to maturity | C day−1 | 1280 | 910 | 1370 |
TBASEM | Lower threshold T for emergence | C | 8.0 | 8.0 | 8.0 |
TEFFMX | Max effective T for emergence | C | 30.0 | 30.0 | 30.0 |
TSUMEM | T sum from sowing to emergence | C | 56.0 | 56.0 | 56.0 |
RUE-0.0 | Rad use efficiency at DS 0 | g MJ−1 | 3.7 | 3.4 | 3.4 |
RUE-1.0 | Rad use efficiency at DS 1.25 | g MJ−1 | 3.4 | 3.1 | 3.2 |
RUE-1.5 | Rad use efficiency at DS 1.50 | g MJ−1 | 2.9 | 2.8 | 2.9 |
RUE-2.0 | Rad use efficiency at DS 2.0 | g MJ−1 | 1.4 | 1.4 | 1.4 |
SLATB-0.0 | Specific leaf area at DS 0 | m2 g−1 | 0.024 | 0.022 | 0.024 |
SLATB-1.0 | Specific leaf area at DS 1.0 | m2 g−1 | 0.035 | 0.033 | 0.033 |
SLATB-2.0 | Specific leaf area at DS 2.0 | m2 g−1 | 0.02 | 0.02 | 0.02 |
LAI critical | Critical LA beyond leaves die | m2 m−2 | 4.0 | 4.0 | 4.0 |
RGRLAI | Max relative increase in LAI | ha ha−1 day−1 | 0.04 | 0.02 | 0.04 |
ROOTDI | Initial rooting depth | m | 0.1 | 0.1 | 0.1 |
ROOTDM | Max rooting depth | m | 2.0 | 2.0 | 2.0 |
RRDMAX | Max increase rate depth | m | 0.012 | 0.012 | 0.012 |
TDWI | Initial total dry weight | kg ha−1 | 6.0 | 5.0 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, G.; Gaiser, T.; Ewert, F.; Srivastava, A. Effects of Recent Climate Change on Maize Yield in Southwest Ecuador. Atmosphere 2021, 12, 299. https://doi.org/10.3390/atmos12030299
Lopez G, Gaiser T, Ewert F, Srivastava A. Effects of Recent Climate Change on Maize Yield in Southwest Ecuador. Atmosphere. 2021; 12(3):299. https://doi.org/10.3390/atmos12030299
Chicago/Turabian StyleLopez, Gina, Thomas Gaiser, Frank Ewert, and Amit Srivastava. 2021. "Effects of Recent Climate Change on Maize Yield in Southwest Ecuador" Atmosphere 12, no. 3: 299. https://doi.org/10.3390/atmos12030299
APA StyleLopez, G., Gaiser, T., Ewert, F., & Srivastava, A. (2021). Effects of Recent Climate Change on Maize Yield in Southwest Ecuador. Atmosphere, 12(3), 299. https://doi.org/10.3390/atmos12030299