Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy
Abstract
:1. Introduction
2. Methodology: Sites and Instruments
2.1. Study Area
2.2. Measurements Method
3. Results and Discussion
3.1. Variation of Particle Number Concentrations
3.2. Weekly Trend of Aerosol Concentrations during Lockdown
3.3. Impact of Meteorological Conditions on Particle Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- Guevara, M.; Jorba, O.; Soret, A.; Petetin, H.; Bowdalo, D.; Serradell, K.; Tena, C.; Denier van der Gon, H.; Kuenen, J.; Peuch, V.H.; et al. Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmos. Chem. Phys. 2021, 21, 773–797. [Google Scholar] [CrossRef]
- Giani, P.; Castruccio, S.; Anav, A.; Howard, D.; Hu, W.; Crippa, P. Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: A modelling study. Lancet Planet. Health 2020, 4, 474–482. [Google Scholar] [CrossRef]
- European Environmental Agency. Air Pollution Goes Down as Europe Takes Hard Measures to Combat Coronavirus. 2020. Available online: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as (accessed on 25 March 2020).
- Baldasano, J. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef]
- Habibi, H.; Awal, R.; Fares, A.; Ghahremannejad, M. COVID-19 and the Improvement of the Global Air Quality: The Bright Side of a Pandemic. Atmosphere 2020, 11, 1279. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abba, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 139280. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Diéguez Rodriguez, J.J.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Pata, U.K. How is covid-19 affecting environmental pollution in us cities? Evidence from asymmetric fourier causality test. Air Qual. Atmos. Health 2020, 1, 7. [Google Scholar]
- Agarwal, A.; Kaushik, A.; Kumar, S.; Mishra, R.K. Comparative study on air quality status in indian and chinese cities before and during the covid-19 lockdown period. Air Qual. Atmos. Health 2020, 1, 12. [Google Scholar] [CrossRef]
- Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis. Remote Sens. 2020, 12, 2420. [Google Scholar] [CrossRef]
- European Space Agency (ESA). 2020. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P (accessed on 27 March 2020).
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Schiermeier, Q. Why pollution is plummeting in some cities—But not others. Nature 2020, 580, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brimblecombe, P.; Lai, Y. Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19. Environments 2021, 8, 2. [Google Scholar] [CrossRef]
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15, 084021. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2. 5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Putaud, J.P.; Pozzoli, L.; Pisoni, E.; Dos Santos, S.M.; Lagler, F.; Lanzani, G.; Dal Santo, U.; Colette, A. Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmos. Chem. Phys. 2010. [Google Scholar] [CrossRef]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Sun, J.; Yu, F.; Zhang, X.; Zhang, Y.; Hu, X.; Xia, C.; Zhang, S. Enhancement of nanoparticle formation and growth during the COVID-19 lockdown period in urban Beijing. Atmos. Chem. Phys. 2020. Preprint. [Google Scholar] [CrossRef]
- Hudda, N.; Matthew, C.; Patton, S.A.P.; Durant, J.L. Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. Sci. Total Environ. 2020, 742, 140931. [Google Scholar] [CrossRef]
- Dai, Q.; Ding, J.; Song, C.; Liu, B.; Bi, X.; Wu, J.; Zhang, Y.; Feng, Y.; Hopke, P.K. Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Sci. Total Environ. 2021, 759, 143548. [Google Scholar] [CrossRef]
- Englert, N. Fine particles and human health a review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef]
- Vu, T.; Zauli-Sajani, S.; Poluzzi, V.; Harrison, R.M. Factors controlling the lung dose of road traffic-generated sub-micrometre aerosols from outdoor to indoor environments. Air Q. Atmos. Health 2018, 11, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Dinoi, A.; Conte, M.; Grasso, F.M.; Contini, D. Long-Term Characterization of Submicron Atmospheric Particles in an Urban Background Site in Southern Italy. Atmosphere 2020, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Cesari, D.; De Benedetto, G.E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Busetto, M.; Calzolari, F.; Ammoscato, I.; Gullì, D.; Dinoi, A.; Calidonna, C.R.; Contini, D.; Sferlazzo, D.; Di Iorio, T.; et al. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem. Sci. Anthr. 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Calidonna, C.R.; Avolio, E.; Gullì, D.; Ammoscato, I.; De Pino, M.; Donateo, A.; Lo Feudo, T. Five Years of Dust Episodes at the Southern Italy GAWRegional Coastal Mediterranean Observatory: Multisensor and Modelling Analysis. Atmosphere 2020, 11, 456. [Google Scholar] [CrossRef]
- Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; et al. Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 2012, 5, 657–685. [Google Scholar] [CrossRef] [Green Version]
- Wiedensohler, A.; Wiesner, A.; Weinhold, K.; Birmili, W.; Hermann, M.; Merkel, M.; Müller, T.; Pfeifer, S.; Schmidt, A.; Tuch, T.; et al. Mobility particle size spectrometers: Calibration procedures and measurement uncertainties. Aerosol Sci. Technol. 2018, 52, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Mazaheri, M.; Clifford, S.; Morawska, L. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area. Atmos. Res. 2017, 194, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Hama, S.M.; Cordell, R.L.; Kos, G.P.; Weijers, E.; Monks, P. Sub-micron particle number size distribution characteristics at two urban locations in Leicester. Atmos. Res. 2017, 194, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhu, Z.; Gong, W.; Xiang, H.; Fang, R. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases. Int. J. Environ. Res. Public Health 2016, 13, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.; Li, J.; Miao, S.; Che, H.; Wang, Y.; Zhang, X.; Liu, S. Interaction between Planetary Boundary Layer and PM2.5 Pollution in Megacities in China: A Review. Curr. Pollut. Rep. 2019, 5, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Santiago, J.L.; Rivas, E.; Sáanchez, B. Reprint of: Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects. Urban For. Urban Green. 2019, 37, 56–64. [Google Scholar] [CrossRef]
- EnelX & Here. City Analytics e Mobility Map. 2020. Available online: https://enelxmobilityflowanalysis.here.com/dashboard/ITA/info.html (accessed on 9 April 2020).
- Conte, M.; Merico, E.; Cesari, D.; Dinoi, A.; Grasso, F.; Donateo, A.; Guascito, M.; Contini, D. Long-term characterisation of African dust advection in south-eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 2020, 233, 104690. [Google Scholar] [CrossRef]
- Yaacob, N.F.; Mat, Y.; Muhamad, R.; Abdul, M.; Khairul, N.; Ahmad, B.; Noor, E. A Review of the Measurement Method, Analysis and Implementation Policy of Carbon Dioxide Emission from Transportation. Sustainability. 2020, 12, p. 5873. Available online: https://www.mdpi.com/2071-1050/12/14/5873 (accessed on 21 July 2020).
- Dinoi, A.; Weinhold, K.; Wiedensohler, A.; Contini, D. Study of new particle formation events in southern Italy. Atmos. Environ. 2021, 244, 117920. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266 Pt 3, 115368. [Google Scholar] [CrossRef]
- Davidović, M.; Dmitrašinović, S.; Jovanović, M.; Radonić, J.; Jovašević-Stojanović, M. Diurnal, Temporal and Spatial Variations of Main Air Pollutants Before and during Emergency Lockdown in the City of Novi Sad (Serbia). Appl. Sci. 2021, 11, 1212. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Diurnal and weekly patterns of primary pollutants in Beijing under COVID-19 restrictions. Faraday Discuss. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Res. Cons. Rec. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Nat. Sci. Rev. 2020, 137. [Google Scholar] [CrossRef]
ECO | REF | 2020 | ||||
---|---|---|---|---|---|---|
BLD | LD | PLD | BLD | LD | PLD | |
NTOT | (9.5 ± 2.3) × 103 6840 (3980–12,800) | (6.9 ± 1.5) × 103 5550 (3580–8740) | (6.7 ± 0.9) × 103 5560(3830–8200) | (10.3 ± 4.1) × 103 7580 (4330–1500) | (5.6 ± 2.3) × 103 4400 (2810–7030) | (5.1 ± 2.3) × 103 4160(2875–6470) |
NACC | (2.7 ± 1.2) × 103 1280 (701–3300) | (1.8 ± 0.5) × 103 1310 (800–2140) | (1.8 ± 0.4) × 103 1620 (1080–2340) | (3.2 ± 2.2) × 103 1560 (733–4590) | (1.8 ± 1.1) × 103 1210 (734–2140) | (1.2 ± 0.5) × 103 1040 (709–1500) |
NAIT | (5.3 ± 1.2) × 103 3780 (2250–6910) | (3.8 ± 0.8) × 103 2990 (1940–4750) | (3.2 ± 0.4) × 103 2730 (1870–4040) | (5.7 ± 2.1) × 103 4060 (2280–7880) | (3.1 ± 1.3) × 103 2400 (1560–3820) | (2.6 ± 0.9) x103 2220 (1500–3410) |
NNUC | (1.5 ± 0.4) × 103 894 (460–1790) | (1.4 ± 0.3) × 103 770 (378–1600) | (1.6 ± 0.5) × 103 762 (387–1590) | (1.5 ± 0.7) × 103 799 (425–1640) | (0.6 ± 0.5) × 103 290 (139–682) | (1.3 ± 0.9) × 103 530 (254–1200) |
LMT | REF | 2020 | ||||
BLD | LD | PLD | BLD | LD | PLD | |
NTOT | (5.6 ± 1.6) × 103 3567(1818–7284) | (5.5 ± 1.9) × 103 3663 (2510–6089) | (4.5 ± 1.2) × 103 3154 (2296–5200) | (6.7 ± 3.4) × 103 4303 (2325–9043) | (5.1 ± 1.8) × 103 4028 (2592–6238) | (4.4 ± 1.5) × 103 3146 (2208–5032) |
NACC | (1.2 ± 0.5) × 103 690 (338–1436) | (1.3 ± 0.5) × 103 1067 (600–1533) | (1.1 ± 0.2) × 103 1142 (799–1439) | (1.5 ± 0.8) × 103 1010 (535–1844) | (1.2 ± 0.6) × 103 1044 (650–1633) | (0.7 ± 0.2) × 103 660 (502–921) |
NAIT | (2.8 ± 0.8) × 103 1812 (903–3471) | (2.7 ± 1.0) × 103 1914 (1293–3089) | (2.0 ± 0.6) × 103 1502 (1061–2393) | (3.1 ± 1.5) × 103 2020 (1152–4082) | (2.5 ± 0.8) × 103 2073 (1390–2923) | (2.1 ± 0.9) × 103 1680 (1190–2352) |
NNUC | (1.7 ± 0.6) × 103 765 (302–1966) | (1.5 ± 0.9) × 103 613 (193–1573) | (1.3 ± 0.7) × 103 474 (100–1465) | (2.1 ± 1.6) × 103 978(369–2514) | (1.4 ± 0.9) × 103 644 (246–1573) | (1.6 ± 0.9) × 103 682 (228–1856) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinoi, A.; Gulli, D.; Ammoscato, I.; Calidonna, C.R.; Contini, D. Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy. Atmosphere 2021, 12, 352. https://doi.org/10.3390/atmos12030352
Dinoi A, Gulli D, Ammoscato I, Calidonna CR, Contini D. Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy. Atmosphere. 2021; 12(3):352. https://doi.org/10.3390/atmos12030352
Chicago/Turabian StyleDinoi, Adelaide, Daniel Gulli, Ivano Ammoscato, Claudia R. Calidonna, and Daniele Contini. 2021. "Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy" Atmosphere 12, no. 3: 352. https://doi.org/10.3390/atmos12030352
APA StyleDinoi, A., Gulli, D., Ammoscato, I., Calidonna, C. R., & Contini, D. (2021). Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy. Atmosphere, 12(3), 352. https://doi.org/10.3390/atmos12030352