Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary
Abstract
:1. Introduction
2. Background and Data
2.1. The Study Region
2.2. Data and Method
2.3. Traffic Reduction in the Study Period
2.4. Meteorological Conditions in the Study Period
3. Results
3.1. Evolution of Air Quality during the Lockdown
3.2. Comparison of Nitrogen Oxide and Ozone Levels to the Reference Years
3.3. Comparison of Particulate Matter Pollution to the Reference Years
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Air Quality Monitoring Sites
ID | Location | Longitude (°E) | Latitude (°N) | Surroundings | Population of Host Municipality (Thousand People) |
---|---|---|---|---|---|
1 | Ajka | 17.56 | 47.10 | Industrial | 30 |
2 | Budapest-Budatétény | 19.01 | 47.41 | Suburban | 1756 |
3 | Budapest-Csepel | 19.09 | 47.40 | Suburban | 1756 |
4 | Budapest-Erzsébet | 19.05 | 47.50 | City, roadside | 1756 |
5 | Budapest-Gergely | 19.16 | 47.47 | Suburban | 1756 |
6 | Budapest-Gilice | 19.18 | 47.43 | Suburban | 1756 |
7 | Budapest-Honvéd | 19.07 | 47.52 | Urban | 1756 |
8 | Budapest-Káposztásmegyer | 19.11 | 47.58 | Suburban | 1756 |
9 | Budapest-Kőrakás | 19.14 | 47.54 | Suburban | 1756 |
10 | Budapest-Kosztolányi | 19.04 | 47.47 | City, roadside | 1756 |
11 | Budapest-Pesthidegkút | 18.96 | 47.56 | Suburban | 1756 |
12 | Budapest-Széna | 19.03 | 47.51 | City, roadside | 1756 |
13 | Budapest-Teleki | 19.09 | 47.49 | Urban | 1756 |
14 | Debrecen-Hajnal | 21.64 | 47.53 | City, roadside | 203 |
15 | Debrecen-Kalotaszeg | 21.62 | 47.51 | Urban | 203 |
16 | Debrecen-Klinika | 21.63 | 47.56 | Suburban | 203 |
17 | Dorog | 18.74 | 47.72 | Industrial | 12 |
18 | Dunaújváros | 18.94 | 46.97 | Industrial | 45 |
19 | Eger | 20.37 | 47.91 | Urban | 54 |
20 | Esztergom | 18.75 | 47.79 | Urban | 28 |
21 | Győr-Ifúság | 17.66 | 47.68 | Urban | 129 |
22 | Győr-Szent István | 17.64 | 47.69 | City, roadside | 129 |
23 | Hernádszurdok | 21.21 | 48.47 | Background | 0.2 |
24 | Kazincbarcika | 20.61 | 48.25 | Industrial | 29 |
25 | Kecskemét | 19.69 | 46.90 | Urban | 111 |
26 | Komló | 18.27 | 46.19 | Industrial | 26 |
27 | Miskolc-Alföldi | 20.81 | 48.09 | Suburban | 158 |
28 | Miskolc-Búza | 20.79 | 48.11 | City | 158 |
29 | Miskolc-Lavotta | 20.79 | 48.05 | Suburban | 158 |
30 | Miskolc-Mobil | 20.69 | 48.10 | Urban | 158 |
31 | Mosonmagyaróvár | 17.27 | 47.87 | Urban | 34 |
32 | Nyíregyháza | 21.72 | 47.96 | Urban | 118 |
33 | Oszlár | 21.03 | 47.87 | Industrial | 0.4 |
34 | Pécs-Boszorkány | 18.21 | 46.08 | Urban | 145 |
35 | Pécs-Nevelési | 18.22 | 46.04 | Suburban | 145 |
36 | Pécs-Szabadság | 18.23 | 46.07 | City, roadside | 145 |
37 | Putnok | 20.43 | 48.29 | Industrial | 7 |
38 | Rudabánya | 20.64 | 48.35 | Industrial | 3 |
39 | Sajószentpéter | 20.70 | 48.22 | Industrial | 12 |
40 | Salgótarján | 19.80 | 48.09 | Industrial | 35 |
41 | Sarród | 16.84 | 47.67 | Background | 1 |
42 | Sopron | 16.58 | 47.69 | Urban | 62 |
43 | Szeged | 20.15 | 46.27 | Urban | 162 |
44 | Székesfehérvár | 18.40 | 47.20 | Urban | 101 |
45 | Szentgotthárd | 16.27 | 46.96 | Background | 9 |
46 | Szolnok | 20.20 | 47.18 | Urban | 71 |
47 | Szombathely | 16.62 | 47.24 | Urban | 78 |
48 | Tatabánya | 18.41 | 47.56 | Industrial | 66 |
49 | Tököl | 18.96 | 47.32 | Suburban | 9 |
50 | Vác | 19.14 | 47.77 | Urban | 33 |
51 | Várpalota | 18.14 | 47.20 | Industrial | 21 |
52 | Veszprém | 17.91 | 47.10 | Urban | 60 |
Appendix B. NOx Concentrations in the Curfew Period (28 March–4 May)
2014–2019 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Name | Surroundings | Available Years | Mean ± SD [µg/m3] | Relative SD | Linear Trend [µg/m3/year, as Percentage of the Mean] | Mean [µg/m3] | Difference to Reference Mean | z-Score |
1 | Ajka | Industrial | 5 | 15 ± 1 | 7% | −3% | 12 | −18% | −2.6 |
6 | Budapest-Gilice | Suburban | 6 | 32 ± 5 | 17% | −4% | 30 | −5% | −0.3 |
9 | Budapest-Kőrakás | Suburban | 5 | 37 ± 5 | 12% | +6% | 30 | −18% | −1.4 |
11 | Budapest-Pesth. | Suburban | 4 | 20 ± 1 | 4% | −1% | 20 | 0% | 0.0 |
12 | Budapest-Széna | City, roadside | 6 | 90 ± 16 | 17% | +1% | 51 | −44% | −2.5 |
13 | Budapest-Teleki | Urban | 5 | 54 ± 4 | 6% | +1% | 46 | −16% | −2.5 |
14 | Debrecen-Hajnal | City, roadside | 5 | 66 ± 9 | 14% | +4% | 51 | −22% | −1.6 |
15 | Debrecen-Kalota. | Urban | 6 | 26 ± 4 | 13% | +1% | 24 | −7% | −0.5 |
16 | Debrecen-Klinika | Suburban | 6 | 24 ± 4 | 18% | −7% | 24 | 0% | 0.0 |
17 | Dorog | Industrial | 4 | 22 ± 7 | 33% | −16% | 42 | +89% | +2.7 |
18 | Dunaújváros | Industrial | 5 | 22 ± 4 | 17% | +5% | 36 | +64% | +3.7 |
19 | Eger | Urban | 6 | 22 ± 3 | 12% | −1% | 16 | −27% | −2.3 |
20 | Esztergom | Urban | 5 | 14 ± 1 | 8% | 0% | 11 | −18% | −2.1 |
21 | Győr-Ifúság | Urban | 6 | 38 ± 5 | 13% | −4% | 23 | −39% | −3.1 |
22 | Győr- SzentIstván | City, roadside | 5 | 48 ± 4 | 8% | +1% | 32 | −33% | −4.1 |
23 | Hernádszurdok | Background | 4 | 14 ± 2 | 18% | −2% | 9 | −32% | −1.8 |
24 | Kazincbarcika | Industrial | 6 | 16 ± 2 | 10% | +5% | 14 | −13% | −1.2 |
25 | Kecskemét | Urban | 4 | 21 ± 3 | 12% | +4% | 15 | −31% | −2.5 |
27 | Miskolc-Alföldi | Suburban | 6 | 23 ± 2 | 10% | +3% | 15 | −34% | −3.5 |
28 | Miskolc-Búza | City | 6 | 66 ± 7 | 10% | +2% | 52 | −21% | −2.0 |
29 | Miskolc-Lavotta | Suburban | 4 | 19 ± 2 | 8% | −2% | 14 | −25% | −3.1 |
31 | Mosonmagyaróvár | Urban | 5 | 19 ± 3 | 14% | −8% | 14 | −26% | −1.9 |
32 | Nyíregyháza | Urban | 6 | 38 ± 5 | 12% | 0% | 27 | −30% | −2.4 |
34 | Pécs-Boszorkány | Urban | 6 | 19 ± 6 | 33% | +10% | 10 | −45% | −1.4 |
35 | Pécs-Nevelési | Suburban | 6 | 22 ± 2 | 7% | +2% | 23 | +3% | +0.5 |
36 | Pécs-Szabadság | City, roadside | 5 | 95 ± 9 | 9% | +5% | 66 | −30% | −3.3 |
38 | Rudabánya | Industrial | 5 | 7 ± 1 | 16% | +5% | 9 | +16% | +1.0 |
39 | Sajószentpéter | Industrial | 6 | 15 ± 1 | 7% | +2% | 16 | +5% | +0.7 |
41 | Sarród | Background | 4 | 7 ± 1 | 15% | −2% | 5 | −36% | −2.4 |
42 | Sopron | Urban | 6 | 18 ± 2 | 13% | +1% | 13 | −27% | −2.1 |
43 | Szeged | Urban | 6 | 19 ± 3 | 17% | −7% | 24 | +25% | +1.5 |
44 | Székesfehérvár | Urban | 5 | 37 ± 16 | 43% | +5% | 27 | −29% | −0.7 |
45 | Szentgotthárd | Background | 6 | 12 ± 2 | 16% | −4% | 9 | −23% | −1.5 |
46 | Szolnok | Urban | 5 | 35 ± 7 | 19% | −5% | 46 | +32% | +1.6 |
48 | Tatabánya | Industrial | 5 | 24 ± 2 | 9% | −4% | 20 | −19% | −2.0 |
49 | Tököl | Suburban | 4 | 20 ± 3 | 14% | +6% | 21 | +2% | +0.2 |
51 | Várpalota | Industrial | 5 | 32 ± 10 | 32% | +1% | 30 | −5% | −0.2 |
52 | Veszprém | Urban | 5 | 25 ± 3 | 13% | +7% | 24 | −6% | −0.5 |
Appendix C. O3 Concentrations in the Curfew Period (28 March–4 May)
2014–2019 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Name | Surroundings | Available Years | Mean ± SD [µg/m3] | Relative SD | Linear Trend [µg/m3/year, as Percentage of the Mean] | Mean [µg/m3] | Difference to Reference Mean | z-Score |
1 | Ajka | Industrial | 6 | 70 ± 15 | 21% | +8% | 82 | +16% | +0.7 |
3 | Budapest-Csepel | Suburban | 5 | 40 ± 7 | 18% | −9% | 67 | +65% | +3.6 |
6 | Budapest-Gilice | Suburban | 6 | 55 ± 7 | 14% | −1% | 57 | +4% | +0.3 |
8 | Budapest-Kápm. | Suburban | 5 | 52 ± 11 | 21% | +3% | 70 | +36% | +1.7 |
9 | Budapest-Kőrakás | Suburban | 6 | 49 ± 9 | 19% | −2% | 61 | +25% | +1.3 |
10 | Budapest-Koszt. | City, roadside | 5 | 40 ± 9 | 23% | −1% | 61 | +53% | +2.3 |
11 | Budapest-Pesth. | Suburban | 6 | 65 ± 5 | 7% | +3% | 72 | +12% | +1.6 |
12 | Budapest-Széna | City, roadside | 6 | 34 ± 5 | 14% | +4% | 33 | −4% | −0.3 |
13 | Budapest-Teleki | Urban | 6 | 56 ± 4 | 8% | +2% | 68 | +22% | +2.8 |
15 | Debrecen-Kalota. | Urban | 6 | 63 ± 3 | 5% | +1% | 67 | +6% | +1.3 |
16 | Debrecen-Klinika | Suburban | 5 | 64 ± 5 | 8% | 0% | 75 | +17% | +2.0 |
18 | Dunaújváros | Industrial | 6 | 49 ± 4 | 8% | 2% | 47 | −5% | −0.6 |
19 | Eger | Urban | 6 | 60 ± 4 | 7% | +3% | 73 | +21% | +3.0 |
20 | Esztergom | Urban | 6 | 61 ± 7 | 12% | −3% | 71 | +17% | +1.4 |
21 | Győr-Ifúság | Urban | 6 | 60 ± 4 | 7% | +1% | 59 | −2% | −0.2 |
22 | Győr- SzentIstván | City, roadside | 6 | 51 ± 5 | 11% | +4% | 63 | +23% | +2.1 |
23 | Hernádszurdok | Background | 6 | 67 ± 6 | 9% | +4% | 73 | +10% | +1.1 |
24 | Kazincbarcika | Industrial | 6 | 60 ± 5 | 8% | +3% | 63 | +5% | +0.6 |
25 | Kecskemét | Urban | 4 | 72 ± 9 | 12% | +8% | 85 | +18% | +1.5 |
26 | Komló | Industrial | 4 | 40 ± 14 | 36% | +5% | 43 | +8% | +0.2 |
28 | Miskolc-Búza | City | 6 | 49 ± 2 | 4% | +1% | 55 | +12% | +2.8 |
29 | Miskolc-Lavotta | Suburban | 6 | 66 ± 2 | 3% | −1% | 57 | −14% | −4.2 |
31 | Mosonmagyaróvár | Urban | 5 | 76 ± 9 | 11% | +5% | 69 | −9% | −0.8 |
32 | Nyíregyháza | Urban | 6 | 58 ± 6 | 10% | +3% | 71 | +23% | +2.3 |
33 | Oszlár | Industrial | 6 | 61 ± 8 | 12% | +3% | 62 | +1% | +0.1 |
34 | Pécs-Boszorkány | Urban | 6 | 63 ± 8 | 14% | −6% | 47 | −26% | −1.9 |
35 | Pécs-Nevelési | Suburban | 5 | 62 ± 13 | 20% | +8% | 76 | +22% | +1.1 |
36 | Pécs-Szabadság | City, roadside | 6 | 44 ± 6 | 14% | −5% | 47 | +7% | +0.5 |
37 | Putnok | Industrial | 4 | 57 ± 8 | 14% | +3% | 57 | 0% | 0.0 |
38 | Rudabánya | Industrial | 6 | 61 ± 10 | 16% | +6% | 63 | +3% | +0.2 |
39 | Sajószentpéter | Industrial | 6 | 57 ± 5 | 8% | −1% | 56 | −3% | −0.3 |
40 | Salgótarján | Industrial | 4 | 64 ± 8 | 12% | +7% | 72 | +12% | +1.0 |
41 | Sarród | Background | 5 | 63 ± 9 | 14% | −4% | 48 | −23% | −1.7 |
42 | Sopron | Urban | 5 | 67 ± 3 | 5% | +2% | 69 | +4% | +0.8 |
43 | Szeged | Urban | 6 | 48 ± 10 | 21% | −10% | 54 | +14% | +0.7 |
44 | Székesfehérvár | Urban | 5 | 40 ± 16 | 40% | +11% | 73 | +82% | +2.1 |
45 | Szentgotthárd | Background | 6 | 67 ± 11 | 16% | +3% | 67 | 0% | 0.0 |
46 | Szolnok | Urban | 6 | 63 ± 13 | 20% | +8% | 73 | +15% | +0.7 |
47 | Szombathely | Urban | 6 | 58 ± 16 | 27% | +10% | 69 | +20% | +0.7 |
48 | Tatabánya | Industrial | 6 | 59 ± 4 | 6% | +1% | 60 | +2% | +0.3 |
51 | Várpalota | Industrial | 6 | 48 ± 17 | 36% | +2% | 75 | +57% | +1.6 |
52 | Veszprém | Urban | 6 | 71 ± 6 | 8% | +3% | 77 | +8% | +1.0 |
Appendix D. PM10 Concentrations in the Curfew Period (28 March–4 May)
2014–2019 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Name | Surroundings | Available Years | Mean ± SD [µg/m3] | Relative SD | Linear Trend [µg/m3/year, as Percentage of the Mean] | Mean [µg/m3] | Difference to Reference Mean | z-Score |
1 | Ajka | Industrial | 6 | 20 ± 4 | 19% | −6% | 20 | 0% | 0.0 |
2 | Budapest-Budatét. | Suburban | 6 | 20 ± 4 | 19% | −2% | 16 | −18% | −0.9 |
3 | Budapest-Csepel | Suburban | 6 | 25 ± 6 | 26% | +5% | 21 | −17% | −0.7 |
5 | Budapest-Gergely | Suburban | 5 | 23 ± 3 | 12% | +4% | 29 | +26% | +2.2 |
6 | Budapest-Gilice | Suburban | 5 | 26 ± 5 | 20% | +4% | 33 | +28% | +1.4 |
7 | Budapest-Honvéd | Urban | 4 | 26 ± 4 | 17% | +2% | 29 | +9% | +0.6 |
8 | Budapest-Kápm. | Suburban | 4 | 20 ± 5 | 23% | +6% | 26 | +28% | +1.2 |
9 | Budapest-Kőrakás | Suburban | 6 | 24 ± 3 | 13% | −2% | 29 | +22% | +1.7 |
10 | Budapest-Koszt. | City, roadside | 6 | 23 ± 7 | 31% | +1% | 18 | −21% | −0.7 |
11 | Budapest-Pesth. | Suburban | 6 | 22 ± 6 | 25% | +3% | 21 | −6% | −0.2 |
12 | Budapest-Széna | City, roadside | 6 | 36 ± 6 | 17% | +3% | 31 | −12% | −0.7 |
13 | Budapest-Teleki | Urban | 5 | 30 ± 8 | 25% | +13% | 29 | −4% | −0.2 |
14 | Debrecen-Hajnal | City, roadside | 6 | 27 ± 3 | 9% | 0% | 27 | −1% | −0.2 |
15 | Debrecen-Kalota. | Urban | 6 | 24 ± 3 | 12% | +4% | 29 | +18% | +1.6 |
16 | Debrecen-Klinika | Suburban | 5 | 24 ± 2 | 7% | +3% | 24 | −3% | −0.4 |
17 | Dorog | Industrial | 5 | 21 ± 3 | 17% | 0% | 18 | −16% | −1.0 |
18 | Dunaújváros | Industrial | 6 | 26 ± 4 | 16% | +6% | 28 | +7% | +0.5 |
19 | Eger | Urban | 6 | 21 ± 3 | 16% | +5% | 22 | +6% | +0.4 |
20 | Esztergom | Urban | 6 | 19 ± 3 | 14% | −1% | 17 | −9% | −0.7 |
21 | Győr-Ifúság | Urban | 5 | 22 ± 5 | 22% | +13% | 23 | +3% | +0.2 |
23 | Hernádszurdok | Background | 6 | 20 ± 3 | 13% | +4% | 20 | +1% | +0.1 |
24 | Kazincbarcika | Industrial | 6 | 22 ± 3 | 15% | 0% | 24 | +7% | +0.5 |
25 | Kecskemét | Urban | 5 | 24 ± 4 | 17% | +7% | 22 | −8% | −0.5 |
27 | Miskolc-Alföldi | Suburban | 4 | 28 ± 2 | 8% | +6% | 29 | +5% | +0.5 |
28 | Miskolc-Búza | City | 6 | 29 ± 6 | 20% | +7% | 30 | +2% | +0.1 |
29 | Miskolc-Lavotta | Suburban | 5 | 22 ± 3 | 13% | −3% | 26 | +17% | +1.3 |
31 | Mosonmagyaróvár | Urban | 6 | 21 ± 5 | 24% | −2% | 20 | −1% | 0.0 |
32 | Nyíregyháza | Urban | 5 | 27 ± 4 | 15% | +7% | 32 | +20% | +1.3 |
33 | Oszlár | Industrial | 6 | 19 ± 3 | 17% | +7% | 20 | +6% | +0.4 |
34 | Pécs-Boszorkány | Urban | 6 | 20 ± 4 | 19% | +3% | 22 | +10% | +0.5 |
35 | Pécs-Nevelési | Suburban | 6 | 19 ± 6 | 30% | +1% | 24 | +29% | +0.9 |
36 | Pécs-Szabadság | City, roadside | 6 | 23 ± 4 | 18% | +3% | 26 | +12% | +0.6 |
37 | Putnok | Industrial | 4 | 23 ± 4 | 17% | +6% | 26 | +16% | +0.9 |
39 | Sajószentpéter | Industrial | 6 | 25 ± 5 | 21% | +4% | 33 | +32% | +1.5 |
40 | Salgótarján | Industrial | 5 | 25 ± 2 | 9% | −2% | 17 | −29% | −3.2 |
41 | Sarród | Background | 4 | 16 ± 4 | 26% | −2% | 17 | +8% | +0.3 |
42 | Sopron | Urban | 6 | 18 ± 4 | 21% | −2% | 19 | +2% | +0.1 |
43 | Szeged | Urban | 6 | 24 ± 4 | 17% | +8% | 26 | +11% | +0.7 |
44 | Székesfehérvár | Urban | 6 | 19 ± 9 | 45% | +22% | 24 | +25% | +0.5 |
45 | Szentgotthárd | Background | 5 | 18 ± 3 | 15% | +4% | 21 | +14% | +0.9 |
46 | Szolnok | Urban | 6 | 23 ± 3 | 15% | +6% | 25 | +7% | +0.5 |
47 | Szombathely | Urban | 5 | 18 ± 3 | 15% | +4% | 21 | +16% | +1.1 |
48 | Tatabánya | Industrial | 6 | 21 ± 3 | 14% | +2% | 20 | −3% | −0.2 |
50 | Vác | Urban | 6 | 25 ± 3 | 12% | +3% | 26 | +3% | +0.3 |
51 | Várpalota | Industrial | 5 | 17 ± 9 | 52% | +23% | 22 | +33% | +0.6 |
52 | Veszprém | Urban | 6 | 18 ± 5 | 30% | +15% | 20 | +12% | +0.4 |
References
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of City Lockdown on the Air Quality of COVID-19-Hit of Wuhan City. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What Are the Effects on Air Quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 Lockdown Effects on Air Quality by NO2 in the Cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified Ozone Pollution in Cities during the COVID-19 Lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. Increased Ozone Levels during the COVID-19 Lockdown: Analysis for the City of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D. Air Pollution in Ontario, Canada during the COVID-19 State of Emergency. Sci. Total Environ. 2020, 742, 140516. [Google Scholar] [CrossRef] [PubMed]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The Impact of COVID-19 Partial Lockdown on the Air Quality of the City of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air Quality during the COVID-19: PM2.5 Analysis in the 50 Most Polluted Capital Cities in the World. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of Major Air Pollutants to COVID-19 Lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Salma, I.; Vörösmarty, M.; Gyöngyösi, A.Z.; Thén, W.; Weidinger, T. What Can We Learn about Urban Air Quality with Regard to the First Outbreak of the COVID-19 Pandemic? A Case Study from Central Europe. Atmos. Chem. Phys. 2020, 20, 15725–15742. [Google Scholar] [CrossRef]
- Lonati, G.; Riva, F. Regional Scale Impact of the COVID-19 Lockdown on Air Quality: Gaseous Pollutants in the Po Valley, Northern Italy. Atmosphere 2021, 12, 264. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. The Mediating Effect of Air Quality on the Association between Human Mobility and COVID-19 Infection in China. Environ. Res. 2020, 189, 109911. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Jalaludin, J.; Latif, M.T. Demystifying a Possible Relationship between COVID-19, Air Quality and Meteorological Factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1520–1529. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; Puliafito, S.E.; Camargo-Caicedo, Y.; Berná-Peña, L.L.; Ruggeri, M.F.; Lopez-Noreña, A.I.; Tames, M.F.; Cereceda-Balic, F. Spread of COVID-19, Meteorological Conditions and Air Quality in the City of Buenos Aires, Argentina: Two Facets Observed during Its Pandemic Lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, T.; Wang, H.; Liu, J.; Bai, Y.; Kong, S.; Zheng, H.; Zhu, Y.; Shu, Z. Importance of Meteorology in Air Pollution Events during the City Lockdown for COVID-19 in Hubei Province, Central China. Sci. Total Environ. 2021, 754, 142227. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kaushik, A.; Kumar, S.; Mishra, R.K. Comparative Study on Air Quality Status in Indian and Chinese Cities before and during the COVID-19 Lockdown Period. Air Qual. Atmos. Health 2020, 13, 1167–1178. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air Quality Changes in New York City during the COVID-19 Pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef] [PubMed]
- Ropkins, K.; Tate, J.E. Early Observations on the Impact of the COVID-19 Lockdown on Air Quality Trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Fu, X.; Bartelli, D.; Smith, L. Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A. Atmosphere 2020, 11, 630. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chien, L.-C.; Li, Y.; Lin, G. Nonuniform Impacts of COVID-19 Lockdown on Air Quality over the United States. Sci. Total Environ. 2020, 745, 141105. [Google Scholar] [CrossRef] [PubMed]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of Lockdown Measures to Combat Covid-19 on Air Quality over Western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef] [PubMed]
- Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; Pérez García-Pando, C. Meteorology-Normalized Impact of the COVID-19 Lockdown upon NO2 Pollution in Spain. Atmos. Chem. Phys. 2020, 20, 11119–11141. [Google Scholar] [CrossRef]
- Velders, G.J.M.; Willers, S.M.; Wesseling, J.; van den Elshout, S.; van der Swaluw, E.; Mooibroek, D.; van Ratingen, S. Improvements in Air Quality in the Netherlands during the Corona Lockdown Based on Observations and Model Simulations. Atmos. Environ. 2021, 247, 118158. [Google Scholar] [CrossRef]
- Grivas, G.; Athanasopoulou, E.; Kakouri, A.; Bailey, J.; Liakakou, E.; Stavroulas, I.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.G.; Ramonet, M.; et al. Integrating in Situ Measurements and City Scale Modelling to Assess the COVID–19 Lockdown Effects on Emissions and Air Quality in Athens, Greece. Atmosphere 2020, 11, 1174. [Google Scholar] [CrossRef]
- Piccoli, A.; Agresti, V.; Balzarini, A.; Bedogni, M.; Bonanno, R.; Collino, E.; Colzi, F.; Lacavalla, M.; Lanzani, G.; Pirovano, G.; et al. Modeling the Effect of COVID-19 Lockdown on Mobility and NO2 Concentration in the Lombardy Region. Atmosphere 2020, 11, 1319. [Google Scholar] [CrossRef]
- Dong, L.; Chen, B.; Huang, Y.; Song, Z.; Yang, T. Analysis on the Characteristics of Air Pollution in China during the COVID-19 Outbreak. Atmosphere 2021, 12, 205. [Google Scholar] [CrossRef]
- Varga-Balogh, A.; Leelőssy, Á.; Lagzi, I.; Mészáros, R. Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere 2020, 11, 669. [Google Scholar] [CrossRef]
- EEA. Air Quality in Europe—2019 Report; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.; Martin-Olmedo, P.; et al. Assessing the Public Health Impacts of Urban Air Pollution in 25 European Cities: Results of the Aphekom Project. Sci. Total Environ. 2013, 449, 390–400. [Google Scholar] [CrossRef]
- Ferenczi, Z. Predictability Analysis of the PM2.5 and PM10 Concentration in Budapest. Időjárás 2013, 117, 359–375. [Google Scholar]
- Ferenczi, Z.; Bozó, L. Effect of the Long-Range Transport on the Air Quality of Greater Budapest Area. Int. J. Environ. Pollut. 2017, 62, 407–416. [Google Scholar] [CrossRef]
- Mahovic, N.S.; Prieto, J.; Jericevic, A.; Gasparac, G.; Smiljanic, I. Aralkum Desert Dust Pollutes Air in South-East Europe. Available online: https://www.eumetsat.int/aralkum-desert-dust-pollutes-air-south-east-europe (accessed on 18 April 2021).
- Gkatzelis, G.I.; Gilman, J.B.; Brown, S.S.; Eskes, H.; Gomes, A.R.; Lange, A.C.; McDonald, B.C.; Peischl, J.; Petzold, A.; Thompson, C.R.; et al. The Global Impacts of COVID-19 Lockdowns on Urban Air Pollution: A Critical Review and Recommendations. Elem. Sci. Anth. 2021, 9. [Google Scholar] [CrossRef]
- Mikkonen, S.; Németh, Z.; Varga, V.; Weidinger, T.; Leinonen, V.; Yli-Juuti, T.; Salma, I. Decennial Time Trends and Diurnal Patterns of Particle Number Concentrations in a Central European City between 2008 and 2018. Atmos. Chem. Phys. 2020, 20, 12247–12263. [Google Scholar] [CrossRef]
Period | Suburban (Árpád híd) | Urban (Erzsébet híd +Petőfi híd) | City (Szabadság híd) |
---|---|---|---|
Public emergency (12 March–16 June) | –26% 1 | –38% 1 | –27% 1 |
–26% 2 | –36% 2 | –30% 2 | |
Curfew restrictions (28 March–4 May) | –38% 1 | –49% 1 | –44% 1 |
–37% 2 | –48% 2 | –47% 2 | |
Lowest 7-day mean | –49% 1,3 –41% 1,4 | –58% 1,3 –53% 1,4 | –52% 1,3 –48% 1,4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Balogh, A.; Leelőssy, Á.; Mészáros, R. Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary. Atmosphere 2021, 12, 561. https://doi.org/10.3390/atmos12050561
Varga-Balogh A, Leelőssy Á, Mészáros R. Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary. Atmosphere. 2021; 12(5):561. https://doi.org/10.3390/atmos12050561
Chicago/Turabian StyleVarga-Balogh, Adrienn, Ádám Leelőssy, and Róbert Mészáros. 2021. "Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary" Atmosphere 12, no. 5: 561. https://doi.org/10.3390/atmos12050561
APA StyleVarga-Balogh, A., Leelőssy, Á., & Mészáros, R. (2021). Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary. Atmosphere, 12(5), 561. https://doi.org/10.3390/atmos12050561