Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation
Abstract
1. Introduction
2. Data and Methods
2.1. Model Description
2.2. Experimental Design
2.2.1. Model Setup
2.2.2. Final Long-Term Experiments Scheme
3. Results
3.1. Long-Term Dataset
3.2. Added Value of the COSMO-CLM Hindcast
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Experiment Acronym | Model Version | Forcing Data | Spin Up | Spectral Nudging | Turbulence Scheme Correction (tkhmin = tkmmin = 0.1) |
---|---|---|---|---|---|
COSMO_erai | 5.0 | ERA-Interim | No | No | Standard |
COSMO_erai_long | 5.0 | ERA-Interim | Yes | No | Standard |
COSMO_era5 | 5.0 | ERA5 | No | Yes | Standard |
COSMO_erai_sn | 5.0 | ERA-Interim | No | Yes | Standard |
COSMO_era5_sn | 5.0 | ERA5 | No | Yes | Standard |
COSMO_erai_turb | 5.0 | ERA-Interim | No | No | Corrected |
COSMO_era5_turb | 5.0 | ERA5 | No | Yes | Corrected |
COSMO_erai_turb_sn | 5.0 | ERA-Interim | No | Yes | Corrected |
COSMO_erai_turb_sn_long | 5.0 | ERA-Interim | Yes | Yes | Corrected |
COSMO_era5_turb_sn | 5.0 | ERA5 | No | Yes | Corrected |
COSMO_era5_sn_v505 | 5.05 | ERA5 | No | Yes | Standard |
COSMO_erai_sn_v505 | 5.05 | ERA-Interim | No | Yes | Standard |
COSMO_erai_v505_long | 5.05 | ERA-Interim | Yes | No | Standard |
COSMO_erai_sn_v505_long | 5.05 | ERA-Interim | No | No | Standard |
Appendix B
Variable Acronyms | Variable Full Names | Dimensions (2D—Surface/3D—Model Levels) |
---|---|---|
U, V, W, T, FI, TKE, POT_VORTIC, H_SNOW, RHO_SNOW, W_SNOW, RELHUM, QV | Zonal, meridional, and vertical velocities, temperature, geopotential, turbulence kinetic energy, Ertel potential vorticity, snow height, density, water content, relative and specific humidity | 3D |
U_10M, V_10M, VMAX_10M, VABSMX_10M | Zonal, meridional, maximal velocities, and wind gusts on 10 m | 2D |
T_2M, TMAX_2M, TMIN_2M, TD_2M, TWATER | 2 m temperature, maximal and minimal, 2 m dew point, water temperature | 2D |
PMSL, HPBL | Sea level pressure, planetary boundary layer height | 2D |
T_S, T_SNOW, T_SO, T_ICE | Surface, snow, soil, ice temperatures | 2D |
TQC, TQI, TQR, TQS, TQG, TQV, | Vertical integrated cloud water, ice, rain, snow, graupel, precipitable water, total water content | 2D |
CLCM, CLCH, CLCL, CLCT, CLDEPTH | Medium, high, low, total, convective cloud cover, cloud depth | 2D |
CLC_CON | Convective cloud area fraction | 3D |
LHFL_S, SHFL_S | Latent and sensible heat fluxes | 2D |
SWDIRS_RAD, SWDIFDS_RAD, THDS_RAD, THUS_RAD, SOBS_RAD, THBS_RAD, SWDIFUS_RAD, ALB_RAD | Surface radiation components: shortwave direct and diffuse, longwave downward and upward, net shortwave and longwave radiation, reflected, albedo | 2D |
RELHUM_2M, QV_2M | Relative and specific humidity at 2 m | 2D |
FRESHSNW, SNOW_MELT | Freshness of snow, snow melt | 2D |
TOT_PREC, SNOW_CON, SNOW_GSP, RAIN_CON, RAIN_GSP, RUNOFF_S, RUNOFF_G | Total precipitation, convective and grid-scale snow, convective and grid-scale rain, surface and subsurface runoff | 2D |
CAPE_MU, CIN_MU, CAPE_ML, CIN_ML | Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) indexes of most unstable (MU) parcel, and mean surface layer parcel (ML) | 2D |
Appendix C
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate Change 2013: The Physical Science Basis; Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Johannessen, O.M.; Kuzmina, S.; Bobylev, L.P.; Miles, M.W. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization. Tellus 2016, 68A, 28234. [Google Scholar] [CrossRef]
- Walsh, J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Glob. Plan. Chang. 2014, 117, 52–63. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Overland, J.; Francis, J.A.; Hall, R.; Hanna, E.; Kim, S.J.; Vihma, T. The melting Arctic and midlatitude weather patterns: Are they connected? J. Clim. 2015, 28, 7917–7932. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Barnes, E.A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 2013, 40, 4734–4739. [Google Scholar] [CrossRef]
- Ivanov, V.; Alexeev, V.A.; Koldunov, N.V.; Repina, I.A.; Sandø, A.B.; Smedsrud, L.H.; Smirnov, A. Is the “Atlantification” of the Arctic Ocean extending? In AGU Fall Meeting Abstracts; AGU: San Francisco, CA, USA, 2015; p. GC11G-1092. [Google Scholar]
- Orlanski, I. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I.A.; Sedlar, J.; Tjernstrom, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; et al. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys. 2014, 14, 9403–9450. [Google Scholar] [CrossRef]
- Tjernström, M.; Mauritsen, T. Mesoscale Variability in the Summer Arctic Boundary Layer. Bound. Layer Meteorol. 2009, 130, 383–406. [Google Scholar] [CrossRef]
- Ivanov, V.; Smirnov, A.; Alexeev, V.; Koldunov, N.; Repina, I.; Semenov, V. Contribution of convection-induced heat flux to winter ice decay in the western Nansen Basin. J. Geophys. Res. 2018, 123, C013995. [Google Scholar] [CrossRef]
- Stoll, P.J.; Graversen, R.G.; Noer, G.; Hodges, K. An objective global climatology of polar lows based on reanalysis data. Q. J. R. Meteorol. Soc. 2018, 144, 2099–2117. [Google Scholar] [CrossRef]
- Shestakova, A.A. Novaya Zemlya bora: The lee characteristics and the oncoming flow’s structure. Arct. Antarct. 2016, 2, 11–22. (In Russian) [Google Scholar] [CrossRef]
- Moore, G.W.K.; Renfrew, I.A. Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Clim. 2005, 18, 3713–3725. [Google Scholar] [CrossRef]
- Knol, M.; Arbo, P.; Duske, P.; Gerland, S.; Lamers, M.; Pavlova, O.; Doksæter Sivle, A.; Tronstad, S. Making the Arctic predictable: The changing information infrastructure of Arctic weather and sea ice services. Polar Geogr. 2018, 41. [Google Scholar] [CrossRef]
- Ludwig, V.; Spreen, G.; Pedersen, L.T. Evaluation of a New Merged Sea-Ice Concentration Dataset at 1 km Resolution from Thermal Infrared and Passive Microwave Satellite Data in the Arctic. Remote Sens. 2020, 12, 3183. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015. [Google Scholar] [CrossRef]
- Bromwich, D.; Kuo, Y.H.; Serreze, M.; Walsh, J.; Bai, L.S.; Barlage, M.; Hines, K.; Slater, A. Arctic system reanalysis: Call for community involvement. Eos Trans. AGU 2010, 91, 13–14. [Google Scholar] [CrossRef]
- Bromwich, D.; Wilson, A.B.; Bai, L.; Liu, Z.; Barlage, M.; Shih, C.-F.; Maldonado, S.; Hines, K.M.; Wang, S.-H.; Woollen, J.; et al. The Arctic System Reanalysis, Version 2. Bull. Am. Meteorol. Soc. 2018, 99, 805–828. [Google Scholar] [CrossRef]
- Hines, K.M.; Bromwich, D.H. Development and testing of Polar WRF. Part I: Greenland ice sheet meteorology. Mon. Weather Rev. 2008, 136, 1971–1989. [Google Scholar] [CrossRef]
- Varentsov, M.I.; Verezemskaya, P.S.; Zabolotskikh, E.V.; Repina, I.A. Quality estimation of polar lows reproduction based on reanalysis data and regional climate modelling. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosm. 2016, 13, 168–191. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; et al. Confronting Arctic troposphere, clouds, and surface energy budget representations regional climate models with observations. J. Geophys. Res. 2020, 124. [Google Scholar] [CrossRef]
- Akperov, M.; Rinke, A.; Mokhov, I.; Matthes, H.; Semenov, V.; Adakudlu, M.; Cassano, J.; Christensen, J.; Dembitskaya, M.; Dethloff, K.; et al. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). J. Geophys. Res. Atm. 2018, 123, 2537–2554. [Google Scholar] [CrossRef]
- Zhou, X.; Matthes, H.; Rinke, A.; Huang, B.; Yang, K.; Dethloff, K. Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model. Atmos. Res. 2019, 217, 137–149. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G. A model-based comparison of extreme winds in the Arctic and around Greenland. Int. J. Climatol. 2018, 38, 5272–5292. [Google Scholar] [CrossRef]
- Kohnemann, S.H.E.; Heinemann, G.; Bromwich, D.H.; Gutjahr, O. Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16. J. Clim. 2017, 30, 8913–8927. [Google Scholar] [CrossRef]
- Cohen, J.; Pfeiffer, K.; Francis, J.A. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.Ø.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Information about CLM-Community. Available online: https://wiki.coast.hzg.de/clmcom (accessed on 25 October 2020).
- Böhm, U.; Kücken, M.; Ahrens, W.; Block, A.; Hauffe, D.; Keuler, K.; Rockel, B.; Will, A. CLM—The Climate Version of LM: Brief Description and Long-Term Applications. COSMO Newsl. 2006, 6, 225–235. [Google Scholar]
- Rockel, B.; Geyer, B. The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol. Z. 2008, 17, 487–498. [Google Scholar] [CrossRef]
- Arakawa, A.; Lamb, V.R. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 1977, 17, 173–265. [Google Scholar]
- Gal-Chen, T.; Somerville, R.C.J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys. 1975, 17, 209–228. [Google Scholar] [CrossRef]
- Schär, C.; Leuenberger, D.; Fuhrer, O.; Lüthi, D.; Girard, C. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Weather Rev. 2002, 130, 2459–2480. [Google Scholar] [CrossRef]
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M. The influence of spectral nudging on typhoon formation in regional climate models. Environ. Res. Lett. 2012, 7, 014024. [Google Scholar] [CrossRef]
- Miguez-Macho, G.; Stenchikov, G.L.; Robock, A. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.F. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Herzog, H.-J.; Vogel, G.; Schubert, U. LLM—A nonhydrostatic model applied to high-resolving simulations of turbulent fluxes over heterogeneous terrain. Theor. Appl. Clim. 2002, 73, 67–86. [Google Scholar] [CrossRef]
- Heise, E.; Ritter, B.; Schrodin, R. Operational implementation of the multilayer soil model. COSMO Tech. Rep. 2006, 9, 19. [Google Scholar]
- Schulz, J.-P.; Vogel, G.; Becker, C.; Kothe, S.; Rummel, U.; Ahrens, B. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high quality observations at grass land and bare soil. Meteorol. Z. 2016, 25, 607–620. [Google Scholar] [CrossRef]
- Mironov, D.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 2010, 15, 218–230. [Google Scholar]
- Core Documentation of the COSMO Model. Available online: http://www.cosmo-model.org/content/model/documentation/core/default.htm (accessed on 25 October 2020).
- Asensio, H.; Messmer, M.; Lüthi, D.; Osterried, K. External Parameters for Numerical Weather Prediction and Climate Application EXTPAR v5_0. User and Implementation Guide. Available online: http://www.cosmo-model.org/content/support/software/ethz/EXTPAR_user_and_implementation_ manual_202003.pdf (accessed on 16 November 2018).
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report. ESA Bull. 2011, 136, 53, hdl:10013/epic.39884.d016. [Google Scholar]
- Silva, N.P.; Camargo, R. Impact of wave number choice in spectral nudging applications during a South Atlantic Convergence Zone event. Front. Earth Sci. 2018, 6, 232. [Google Scholar] [CrossRef]
- Gómez, B.; Miguez-Macho, G. The impact of wave number selection and spin-up time in spectral nudging. Q. J. R. Meteorol. Soc. 2017, 143, 1772–1786. [Google Scholar] [CrossRef]
- Radu, R.; Déqué, M.; Somot, S. Spectral nudging in a spectral regional climate model. Tellus A Dyn. Meteorol. Ocean. 2008, 60, 898–910. [Google Scholar] [CrossRef]
- Kislov, A.V.; Rivin, G.S.; Platonov, V.S.; Varentsov, M.I.; Rozinkina, I.A.; Nikitin, M.A.; Chumakov, M.M. Mesoscale Atmospheric Modeling of Extreme Velocities over the Sea of Okhotsk and Sakhalin. Izv. Atmos. Ocean. Phys. 2018, 54, 322–326. [Google Scholar] [CrossRef]
- Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere 2018, 9, 50. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Brokopf, R.; Crueger, T.; Esch, M.; Fiedler, S.; Helmert, J.; Hohenegger, C.; Kornblueh, L.; Köhler, M.; Manzini, E.; et al. ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Description. J. Adv. Model. Earth Syst. 2018, 10, 1613–1637. [Google Scholar] [CrossRef]
- Neske, S. Towards an improved Turbulence Closure Scheme by analyzing ICON Model Simulations. Ph.D. Thesis, Universität Köln, Köln, Germany, 2017. [Google Scholar]
- Rivin, G.S.; Rozinkina, I.A.; Vil’fand, R.M.; Kiktev, D.B.; Tudrii, K.O.; Blinov, D.V.; Varentsov, M.I.; Zakharchenko, D.I.; Samsonov, T.E.; Repina, I.A.; et al. Development of the High-Resolution Operational System for Numerical Prediction of Weather and Severe Weather Events for the Moscow Region. Russ. Meteorol. Hydrol. 2020, 45, 455–465. [Google Scholar] [CrossRef]
- Garbero, V.; Milelli, M.; Bucchignani, E.; Mercogliano, P.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Wouters, H.; Schulz, J.-P.; et al. Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere 2021, 12, 237. [Google Scholar] [CrossRef]
- Different Configurations for the COSMO-ICON Physics. Available online: http://www.cosmo-model.org/content/model/releases/cosmo-icon-physics.htm (accessed on 15 January 2021).
- Heinemann, G. Assessment of regional climate model simulations of the katabatic boundary layer structure over Greenland. Atmosphere 2020, 11, 571. [Google Scholar] [CrossRef]
- Cerenzia, I.; Tampieri, F.; Tesini, M.S. Diagnosis of Turbulence Schema in Stable Atmospheric Conditions and Sensitivity Tests. COSMO Newsl. 2014, 14, 28–36. [Google Scholar]
- Platonov, V.; Varentsov, M. Creation of the long-term high-resolution hydrometeorological archive for Russian Arctic: Methodology and first results. IOP Conf. Series Earth Environ. Sci. 2019, 386. [Google Scholar] [CrossRef]
- Cerenzia, I. Challenges and Critical Aspects in Stable Boundary Layer Representation in Numerical Weather Prediction Modeling: Diagnostic Analyses and Proposals for Improvement. Dottorato di ricerca in Geofisica, 29 Ciclo. Alma Mater. Studiorum Univ. Bologna 2017. [Google Scholar] [CrossRef]
- Buzzi, M.; Rotach, M.W.; Holtslag, M.; Holtslag, A.A.M. Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorol. Z. 2011, 20, 335–350. [Google Scholar] [CrossRef]
- Kislov, A.V.; Varentsov, M.I.; Tarasova, L.L. Role of spring soil moisture in the formation of large-scale droughts in the East European Plain in 2002 and 2010. Izv. Atmos. Ocean. Phys. 2015, 51, 405–411. [Google Scholar] [CrossRef]
- Schlemmer, L.; Schär, C.; Lüthi, D.; Strebel, L. A Groundwater and Runoff Formulation for Weather and Climate Models. J. Adv. Model. Earth Syst. 2018, 10, 1809–1832. [Google Scholar] [CrossRef]
- Voevodin, V.; Antonov, A.; Nikitenko, D.; Shvets, P.; Sobolev, S.; Sidorov, I.; Stefanov, K.; Voevodin, V.; Zhumatiy, S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomp. Front. Innov. 2019, 6, 4–11. [Google Scholar] [CrossRef]
- Platonov, V.; Varentsov, M. Russian Arctic COSMO-CLM hindcast over 1980–2016 period. figshare. Collection 2020. [Google Scholar] [CrossRef]
- Davies, H.C. A lateral boundary formulation for multi-level prediction models. Q. J. R. Meteorol. Soc. 1976, 102, 405–418. [Google Scholar] [CrossRef]
- Doms, G. A Description of the Nonhydrostatic Regional COSMO-Model. Part I: Dynamics and Numerics; Deutscher Wetterdienst: Offenbach, Germany, 2011; p. 147. [Google Scholar]
- Paeth, H.; Mannig, B. On the added value of regional climate modeling in climate change assessment. Clim. Dyn. 2013, 41, 1057–1066. [Google Scholar] [CrossRef]
- Lenz, C.J.; Früh, B.; Adalatpanah, F.D. Is there potential added value in COSMO–CLM forced by ERA reanalysis data? Clim. Dyn. 2017, 49, 4061–4074. [Google Scholar] [CrossRef]
- Souverijns, N.; Gossart, A.; Demuzere, M.; Lenaerts, J.T.M.; Medley, B.; Gorodetskaya, I.V.; Vanden Broucke, S.; van Lipzig, N.P.M. A New Regional Climate Model for POLAR-CORDEX: Evaluation of a 30-Year Hindcast with COSMO-CLM2 over Antarctica. J. Geophys. Res. Atm. 2019, 124, 1405–1427. [Google Scholar] [CrossRef]
- Kelemen, F.D.; Primo, C.; Feldmann, H.; Ahrens, B. Added Value of Atmosphere-Ocean Coupling in a Century-Long Regional Climate Simulation. Atmosphere 2019, 10, 537. [Google Scholar] [CrossRef]
- Efimov, V.V.; Komarovskaya, O.I. The Novaya Zemlya bora: Analysis and numerical modeling. Izv. Atm. Ocean. Phys. 2018, 54, 73–85. [Google Scholar] [CrossRef]
- Shestakova, A.A.; Myslenkov, S.A.; Kuznetsova, A.M. Influence of Novaya Zemlya Bora on Sea Waves: Satellite Measurements and Numerical Modeling. Atmosphere 2020, 11, 726. [Google Scholar] [CrossRef]
- Wetzel, C.; Brümmer, B. An Arctic inversion climatology based on the European Centre Reanalysis ERA-40. Meteorol. Z. 2011, 20, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Christakos, K.; Furevik, B.R.; Aarnes, O.J.; Breivik, Ø.; Tuomi, L.; Byrkjedal, Ø. The importance of wind forcing in fjord wave modelling. Ocean Dyn. 2020, 70, 57–75. [Google Scholar] [CrossRef]
- Noer, G.; Saetra, Ø.; Lien, T.; Gusdal, Y. A climatological study of polar lows in the Nordic Seas. Q. J. R. Meteorol. Soc. 2011, 137, 1762–1772. [Google Scholar] [CrossRef]
- Hallerstig, M.; Magnusson, L.; Kolstad, E.W.; Mayer, S. How grid-spacing and convection representation affected the wind speed forecasts of four polar lows. Q. J. R. Meteorol. Soc. 2021, 147, 150–165. [Google Scholar] [CrossRef]
- Smirnova, J.; Golubkin, P. Comparing polar lows in atmospheric reanalyses: Arctic System Reanalysis versus ERA-Interim. Mon. Weather Rev. 2017, 145, 2375–2383. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.; Hodges, K. Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis? Mon. Weather Rev. 2014, 142, 2596–2608. [Google Scholar] [CrossRef]
- Orimolade, A.P.; Furevik, B.R.; Noer, G.; Gudmestad, O.T.; Samelson, R.M. Waves in polar lows. J. Geophys. Res. Ocean. 2016, 121, 6470–6481. [Google Scholar] [CrossRef]
- Revokatova, A.; Nikitin, M.; Rivin, G.; Rozinkina, I.; Nikitin, A.; Tatarinovich, E. High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season. Atmosphere 2021, 12, 137. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 2012, 117, D08101. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Pichel, W.G.; Monaldo, F.M.; Jackson, C.h.R.; Sapper, J.; Hatteberg, R. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite. NOAA National Centers for Environmental Information. Dataset 2015. [Google Scholar] [CrossRef]
- SeaPAC. QuikSCAT Level 2B Ocean Wind Vectors in 12.5km Slice Composites Version 4.0; PO.DAAC: Pasadena, CA, USA, 2018; Ver. 4.0. [Google Scholar] [CrossRef]
- Kummerow, C.; Ferraro, R.; Randel, D. AMSR-E/AMSR2 Unified L2B Global Swath Surface Precipitation, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
Model Set Up | December–January 2012–2013 | August–September 2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T_2M | V_10M | PMSL | T_2M | V_10M | PMSL | |||||||
RMSE | R | RMSE | R | RMSE | R | RMSE | R | RMSE | R | RMSE | R | |
COSMO_erai | 4.22 | 0.76 | 2.30 | 0.55 | 2.98 | 0.96 | 2.38 | 0.77 | 2.02 | 0.65 | 1.87 | 0.99 |
COSMO_era5 | 4.19 | 0.76 | 2.30 | 0.57 | 2.77 | 0.97 | 2.34 | 0.79 | 2.00 | 0.67 | 1.70 | 0.99 |
COSMO_erai_sn | 3.69 | 0.83 | 2.12 | 0.65 | 2.01 | 0.99 | 2.89 | 0.79 | 1.89 | 0.70 | 1.53 | 1.00 |
COSMO_era5_sn | 3.70 | 0.83 | 2.10 | 0.66 | 2.13 | 0.99 | 2.29 | 0.81 | 1.87 | 0.71 | 1.42 | 1.00 |
COSMO_erai_turb_sn | 3.38 | 0.84 | 2.12 | 0.65 | 2.08 | 0.99 | 2.35 | 0.79 | 1.89 | 0.69 | 1.57 | 1.00 |
COSMO_era5_turb_sn | 3.37 | 0.85 | 2.09 | 0.66 | 2.18 | 0.99 | 2.35 | 0.81 | 1.88 | 0.70 | 1.45 | 1.00 |
COSMO_erai_sn_v505 | 3.34 | 0.85 | 2.22 | 0.65 | 1.69 | 0.99 | 2.10 | 0.81 | 1.97 | 0.70 | 1.40 | 1.00 |
COSMO_era5_sn_v505 | 3.33 | 0.85 | 2.24 | 0.67 | 1.63 | 0.99 | 2.16 | 0.82 | 1.97 | 0.70 | 1.34 | 1.00 |
Variable, Period | Mean Difference, Whole Domain | Mean Difference, Land Grids | Mean Difference, Sea Grids | First Percentile of Difference, Whole Domain | 99th Percentile of Difference, Whole Domain |
---|---|---|---|---|---|
VEL_10M, 1980–1990 | 0.13 | 0.34 | −0.14 | −1.63 | 2.22 |
VEL_10M, 2010–2016 | 0.14 | 0.37 | −0.13 | −1.63 | 2.19 |
VEL_10M, 1980–1990 (DJF) | 0.03 | 0.37 | −0.38 | −2.25 | 2.47 |
VEL_10M, 2010–2016 (DJF) | 0.06 | 0.42 | −0.38 | −2.14 | 2.47 |
VEL_10M, 1980–1990 (JJA) | 0.23 | 0.24 | 0.23 | −1.06 | 2.15 |
VEL_10M, 2010–2016 (JJA) | 0.25 | 0.24 | 0.26 | −1.12 | 2.14 |
T_2M, 1980–1990 | −0.03 | 0.10 | −0.19 | −1.67 | 1.72 |
T_2M, 2010–2016 | −0.24 | 0.01 | −0.56 | −1.87 | 1.39 |
T_2M, 1980–1990 (DJF) | 0.30 | 0.16 | 0.48 | −2.18 | 4.81 |
T_2M, 2010–2016 (DJF) | 0.04 | 0.08 | 0.00 | −2.51 | 4.85 |
T_2M, 1980–1990 (JJA) | −0.37 | −0.05 | −0.76 | −2.70 | 1.31 |
T_2M, 2010–2016 (JJA) | −0.42 | −0.07 | −0.85 | −2.61 | 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platonov, V.; Varentsov, M. Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation. Atmosphere 2021, 12, 350. https://doi.org/10.3390/atmos12030350
Platonov V, Varentsov M. Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation. Atmosphere. 2021; 12(3):350. https://doi.org/10.3390/atmos12030350
Chicago/Turabian StylePlatonov, Vladimir, and Mikhail Varentsov. 2021. "Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation" Atmosphere 12, no. 3: 350. https://doi.org/10.3390/atmos12030350
APA StylePlatonov, V., & Varentsov, M. (2021). Introducing a New Detailed Long-Term COSMO-CLM Hindcast for the Russian Arctic and the First Results of Its Evaluation. Atmosphere, 12(3), 350. https://doi.org/10.3390/atmos12030350