Methane Emissions during the Tide Cycle of a Yangtze Estuary Salt Marsh
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Sites
2.2. Gas Sampling and Measurement
2.3. Pore-Water CH4 Concentration
2.4. Environmental Parameters Measurement
2.5. Data Processing
3. Results
3.1. Variation of Environmental Factors
3.2. CH4 Fluxes from the Neap to Spring Tide
3.3. Pore-Water CH4 Concentrations
3.4. Tide Variations during the Period of Flux Measurement
4. Discussion
4.1. Variations of CH4 Emissions during the Tide Cycle
4.2. Main Environmental Factors Driving the Tidal Variation of CH4 Emission
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.S.; Gupta, V.K. Degraded Land Restoration in Reinstating CH4 Sink. Front. Microbiol. 2016, 7, 923. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Shindell, D.T.; Faluvegi, G.; Koch, D.M.; Schmidt, G.A.; Unger, N.; Bauer, S.E. Improved Attribution of Climate Forcing to Emissions. Science 2009, 326, 716–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickett-Heaps, C.A.; Jacob, D.J.; Wecht, K.J.; Kort, E.A.; Wofsy, S.C.; Diskin, G.S.; Worthy, D.E.J.; Kaplan, J.O.; Bey, I.; Drevet, J. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada). Atmos. Chem. Phys. 2011, 11, 37733779. [Google Scholar] [CrossRef] [Green Version]
- Vizza, C.; West, W.E.; Jones, S.E.; Hart, J.A.; Lamberti, G.A. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences 2017, 14, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Nahlik, A.M.; Mitsch, W.J. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob. Chang. Biol. 2011, 17, 1321–1334. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.H.; Hu, J.; Ho, Y.S. A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecol. Eng. 2010, 36, 973–980. [Google Scholar] [CrossRef]
- Bhullar, G.S.; Edwards, P.J.; Venterink, H.O. Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland. PLoS ONE 2014, 9, e89588. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zhang, M.Q.; Zhao, B.; Guo, H.Q. Dependence of coastal wetland ecosystem respiration on temperature and tides: A temporal perspective. Biogeosciences 2014, 11, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, O.I.; Ishtiaq, K.S.; Tang, J.W.; Moseman-Valtierra, S.; Kroeger, K.D.; Gonneea, M.E.; Mora, J.; Morkeski, K. Environmental Controls, Emergent Scaling, and Predictions of Greenhouse Gas (GHG) Fluxes in Coastal Salt Marshes. J. Geophys. Res. Biogeosci. 2018, 123, 2234–2256. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Needelman, B.A.; Megonigal, J.P. Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands 2011, 31, 831–842. [Google Scholar] [CrossRef]
- Jeffrey, L.C.; Maher, D.T.; Johnston, S.G.; Kelaher, B.P.; Steven, A.; Tait, D.R. Wetland methane emissions dominated by plant-mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnol. Oceanogr. 2019, 64, 1895–1912. [Google Scholar] [CrossRef]
- Mueller, P.; Mozdzer, T.J.; Langley, J.A.; Aoki, L.R.; Noyce, G.L.; Megonigal, J.P. Plant species determine tidal wetland methane response to sea level rise. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef]
- Al-Haj, A.N.; Fulweiler, R.W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Chang. Biol. 2020, 26, 2988–3005. [Google Scholar] [CrossRef]
- Sturm, K.; Werner, U.; Grinham, A.; Yuan, Z.G. Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient. Estuar. Coast. Shelf Sci. 2017, 192, 159–169. [Google Scholar] [CrossRef]
- Baird, A.J.; Beckwith, C.W.; Waldron, S.; Waddington, J.M. Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Kao-Kniffin, J.; Freyre, D.S.; Balser, T.C. Methane dynamics across wetland plant species. Aquat. Bot. 2010, 93, 107–113. [Google Scholar] [CrossRef]
- Askaer, L.; Elberling, B.; Friborg, T.; Jorgensen, C.J.; Hansen, B.U. Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea—Dominant wetland. Plant Soil 2011, 343, 287–301. [Google Scholar] [CrossRef]
- Smemo, K.A.; Yavitt, J.B. Anaerobic oxidation of methane: An underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 2011, 8, 779–793. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.; Pancotto, V.A.; Elzenga, J.T.M.; Visser, E.J.W.; Grootjans, A.P.; Pol, A.; Iturraspe, R.; Roelofs, J.G.M.; Smolders, A.J.P. Zero methane emission bogs: Extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytol. 2011, 190, 398–408. [Google Scholar] [CrossRef]
- Segers, R. Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry 1998, 41, 23–51. [Google Scholar] [CrossRef]
- Tang, J.; Zhuang, Q.; Shannon, R.D.; White, J.R. Quantifying wetland methane emissions with process-based models of different complexities. Biogeosciences 2010, 7, 3817–3837. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Wang, D.Q.; Chen, Z.L.; Hu, H. Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh. Estuar. Coast. Shelf Sci. 2018, 204, 202–211. [Google Scholar] [CrossRef]
- Wang, D.Q.; Chen, Z.L.; Xu, S.Y. Methane emission from Yangtze estuarine wetland, China. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.Q.; Li, X.Z.; Jiang, J.Y.; Xue, L.M.; Craft, C.B. Distribution of organic carbon storage in different salt-marsh plant communities: A case study at the Yangtze Estuary. Estuar. Coast. Shelf Sci. 2020, 243. [Google Scholar] [CrossRef]
- Sun, S.C.; Cai, Y.L.; An, S.Q. Differences in morphology and biomass allocation of Scirpus mariqueter between creekside and inland communities in the Changjiang estuary, China. Wetlands 2002, 22, 786–793. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, D.Q.; Chen, Z.L.; Jin, H.Y.; Hu, H.; Chen, J.F.; Yang, Z. Role of Scirpus mariqueter on Methane Emission from an Intertidal Saltmarsh of Yangtze Estuary. Sustainability 2018, 10, 1139. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhan, L.; Chen, L.; Zhang, J.; Wu, M.; Liu, J. Spatial and temporal patterns of methane and its influencing factors in the Jiulong River estuary, southeastern China. J. Mar. Chem. 2020, 228, 103909. [Google Scholar] [CrossRef]
- Livesley, S.J.; Andrusiak, S.M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar. Coast. Shelf Sci. 2012, 97, 19–27. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Maher, D.T.; Erler, D.V.; Murray, R.; Eyre, B.D. Factors controlling seasonal CO2 and CH4 emissions in three tropical mangrove-dominated estuaries in Australia. Estuar. Coast. Shelf Sci. 2018, 215, 69–82. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Yun, J.; Yang, Y.R.; Ding, W.X.; Yuan, J.J.; Kang, H. Mechanisms of enhanced methane emission due to introduction of Spartina anglica and Phragmites australis in a temperate tidal salt marsh. Ecol. Eng. 2020, 153, 105905. [Google Scholar] [CrossRef]
- Cheng, X.L.; Luo, Y.Q.; Xu, Q.; Lin, G.H.; Zhang, Q.F.; Chen, J.K.; Li, B. Seasonal variation in CH4 emission and its C-13-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil 2010, 327, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.J.; Ren, H.X.; Ren, P.; Li, J.B.; Wilson, B.J.; Tong, C. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China. J. Environ. Sci 2017, 52, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.E.; Dalal, R.C.; Rennenberg, H.; Meyer, R.L.; Reeves, S.; Schmidt, S. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol. Biochem. 2007, 39, 622–631. [Google Scholar] [CrossRef]
- Miao, Y.; Song, C.; Sun, L.; Wang, X.; Meng, H.; Mao, R. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: Effects of active layer depth and vegetation. Biogeosciences 2012, 9, 4455–4464. [Google Scholar] [CrossRef] [Green Version]
- Pearson, M.; Saarinen, M.; Minkkinen, K.; Silvan, N.; Laine, J. Short-term impacts of soil preparation on greenhouse gas fluxes: A case study in nutrient-poor, clearcut peatland forest. For. Ecol. Manag. 2012, 283, 10–26. [Google Scholar] [CrossRef]
- Jackowicz-Korczynski, M.; Christensen, T.R.; Backstrand, K.; Crill, P.; Friborg, T.; Mastepanov, M.; Strom, L. Annual cycle of methane emission from a subarctic peatland. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Strom, L.; Mastepanov, M.; Christensen, T.R. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 2005, 75, 65–82. [Google Scholar] [CrossRef]
- Song, C.C.; Xu, X.F.; Tian, H.Q.; Wang, Y.Y. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob. Chang. Biol. 2009, 15, 692–705. [Google Scholar] [CrossRef]
- Moore, T.R.; De Young, A.; Bubier, J.L.; Humphreys, E.R.; Lafleur, P.M.; Roulet, N.T. A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern Canada. Ecosystems 2011, 14, 646–657. [Google Scholar] [CrossRef]
- Sun, Z.G.; Jiang, H.H.; Wang, L.L.; Mou, X.J.; Sun, W.L. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant Soil 2013, 369, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Huang, J.F.; Hu, Z.Q.; Jin, Y.F. Diurnal Variations of Carbon Dioxide, Methane, and Nitrous Oxide Vertical Fluxes in a Subtropical Estuarine Marsh on Neap and Spring Tide Days. Estuar. Coasts 2013, 36, 633–642. [Google Scholar] [CrossRef]
- Wright, E.L.; Black, C.R.; Turner, B.L.; Sjogersten, S. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland. Glob. Chang. Biol. 2013, 19, 3775–3789. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.Y.F. Methane Dynamics in Northern Peatlands: A Review. Pedosphere 2009, 19, 409–421. [Google Scholar] [CrossRef]
- Dunfield, P.; Knowles, R.; Dumont, R.; Moore, T.R. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol. Biochem. 1993, 25, 321–326. [Google Scholar] [CrossRef]
- Moosavi, S.C.; Crill, P.M. CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique. J. Geophys. Res. Atmos. 1998, 103, 29093–29106. [Google Scholar] [CrossRef]
- Heyer, J.; Berger, U. Methane emission from the coastal area in the southern Baltic Sea. Estuar. Coast. Shelf Sci. 2000, 51, 13–30. [Google Scholar] [CrossRef]
- Elberling, B.; Askaer, L.; Jorgensen, C.J.; Joensen, H.P.; Kuhl, M.; Glud, R.N.; Lauritsen, F.R. Linking Soil O2, CO2, and CH4 Concentrations in a Wetland Soil: Implications for CO2 and CH4 Fluxes. Environ. Sci. Technol. 2011, 45, 3393–3399. [Google Scholar] [CrossRef] [PubMed]
- Hornibrook, E.R.C.; Bowes, H.L.; Culbert, A.; Gallego-Sala, A.V. Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences 2009, 6, 1490–1504. [Google Scholar] [CrossRef] [Green Version]
- Boeckx, P.; VanCleemput, O. Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen-turnover. J. Environ. Qual. 1996, 25, 178–183. [Google Scholar] [CrossRef]
- Tong, C.; Wang, W.Q.; Zeng, C.S.; Marrs, R. Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. J. Environ. Sci. Health A 2010, 45, 506–516. [Google Scholar] [CrossRef]
- Ding, W.X.; Zhang, Y.H.; Cai, Z.C. Impact of permanent inundation on methane emissions from a Spartina alterniflora coastal salt marsh. Atmos. Environ. 2010, 44, 3894–3900. [Google Scholar] [CrossRef]
- Ma, A.N.; Lu, J.J.; Wang, T.H. Effects of Elevation and Vegetation on Methane Emissions from a Freshwater Estuarine Wetland. J. Coast. Res. 2012, 28, 1319–1329. [Google Scholar] [CrossRef]
Light Intensity | Air Temperature | 5 cm GT | 10 cm GT | 15 cm GT | CH4 Fluxes | |
---|---|---|---|---|---|---|
Light intensity | 1 | |||||
Air temperature | 0.621 ** | 1 | ||||
5 cm GT | 0.544 ** | 0.976 ** | 1 | |||
10 cm GT | 0.477 ** | 0.969 ** | 0.989 ** | 1 | ||
15 cm GT | 0.504 ** | 0.973 ** | 0.985 ** | 0.974 ** | 1 | |
CH4 flux | 0.024 | 0.412 ** | 0.394 ** | 0.443 ** | 0.367 ** | 1 |
Date | Time | Tide Height (cm) | Time | Tide Height (cm) |
---|---|---|---|---|
10 July | 01:17 | 144 | 06:06 | 303 |
13:21 | 115 | 19:07 | 340 | |
13 July | 05:36 | 110 | 10:15 | 298 |
17:02 | 105 | 23:05 | 405 | |
16 July | 00:25 | 426 | 08:05 | 96 |
12:33 | 356 | 19:29 | 102 | |
19 July | 01:29 | 416 | 09:27 | 110 |
13:51 | 365 | 20:59 | 119 | |
22 July | 03:06 | 361 | 10:07 | 107 |
15:45 | 339 | 22:24 | 147 | |
24 July | 04:37 | 284 | 11:23 | 133 |
17:43 | 309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, D.; Chen, Z.; Chen, J.; Hu, H.; Wang, R. Methane Emissions during the Tide Cycle of a Yangtze Estuary Salt Marsh. Atmosphere 2021, 12, 245. https://doi.org/10.3390/atmos12020245
Li Y, Wang D, Chen Z, Chen J, Hu H, Wang R. Methane Emissions during the Tide Cycle of a Yangtze Estuary Salt Marsh. Atmosphere. 2021; 12(2):245. https://doi.org/10.3390/atmos12020245
Chicago/Turabian StyleLi, Yangjie, Dongqi Wang, Zhenlou Chen, Jie Chen, Hong Hu, and Rong Wang. 2021. "Methane Emissions during the Tide Cycle of a Yangtze Estuary Salt Marsh" Atmosphere 12, no. 2: 245. https://doi.org/10.3390/atmos12020245
APA StyleLi, Y., Wang, D., Chen, Z., Chen, J., Hu, H., & Wang, R. (2021). Methane Emissions during the Tide Cycle of a Yangtze Estuary Salt Marsh. Atmosphere, 12(2), 245. https://doi.org/10.3390/atmos12020245