Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network
Abstract
:1. Introduction
2. Experiments
2.1. Measurement Sites
2.2. Background Data Selection Algorithm (BaDS)
3. Results
3.1. Analysis of CO2 Diurnal Variation and Impact of BaDS Application
3.2. Analysis of CO2 Time Series and Impact of BaDS Application
3.3. Analysis of CO2 Seasonal Cycle and Impact of BaDS Application
3.4. Use Case of the BaDS Application: Investigation of Interannual Variability of the Seasonal CO2 Cycle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Houweling, S.; Segers, A.; Krol, M.; Frankenberg, C.; Scheepmaker, R.A.; Dlugokencky, E.; Wofsy, S.C.; Kort, E.A.; Sweeney, C.; et al. Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. Atmos. 2013, 118, 7350–7369. [Google Scholar] [CrossRef] [Green Version]
- Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; et al. Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos. Chem. Phys. 2015, 15, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the Collaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- WMO. Greenhouse Gas Bulletin, No. 14|22. November 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=5455 (accessed on 30 December 2020).
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- WMO. WMO Global Atmosphere Watch Implementation Plan, 2016–2023 (WMO, 2017). Available online: http://go.nature.com/2bcwfc2 (accessed on 30 December 2020).
- Prinn, R.G.; Weiss, R.F.; Fraser, P.J.; Simmonds, P.G.; Cunnold, D.M.; Alyea, F.N.; O’Doherty, S.; Salameh, P.; Miller, B.R.; Huang, J.; et al. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res. Atmos. 2000, 105, 17751–17792. [Google Scholar] [CrossRef]
- Hazan, L.; Tarniewicz, J.; Ramonet, M.; Laurent, O.; Abbaris, A. Automatic processing of atmospheric CO2 and CH4 mole fractions at the ICOS Atmosphere Thematic Centre. Atmos. Meas. Tech. 2016, 9, 4719–4736. [Google Scholar] [CrossRef] [Green Version]
- Tans, P.; Thoning, K.W.; Elliot, W.P.; Conway, T.J. Background atmospheric CO2 from weekly flask samples at Barrow, Alaska: Optimal signal recovery and error estimates. In NOAA Technical Memorandum, ERL ARL-173; Air Resources Laboratory: Silver Spring, MD, USA, 1989; pp. 112–123. [Google Scholar]
- Pickers, P.A.; Manning, A.C. Investigating bias in the application of curve fitting programs to atmospheric time series. Atmos. Meas. Tech. 2015, 8, 1469–1489. [Google Scholar] [CrossRef] [Green Version]
- Pales, J.C.; Keeling, C.D. The concentration of atmospheric carbon dioxide in Hawaii. J. Geophys. Res. 1965, 70, 6053–6076. [Google Scholar] [CrossRef]
- Colombo, T.; Santaguida, R.; Capasso, A.; Calzolari, F.; Evangelisti, F.; Bonasoni, P. Biospheric influence on carbon dioxide measurements in Italy. Atmos. Environ. 2000, 34, 4963–4969. [Google Scholar] [CrossRef]
- Uglietti, C.; Leuenberger, M.; Brunner, D. European source and sink areas of CO2 retrieved from Lagrangian transport model interpretation of combined O2 and CO2 measurements at the high alpine research station Jungfraujoch. Atmos. Chem. Phys. 2011, 11, 8017–8036. [Google Scholar] [CrossRef] [Green Version]
- Henne, S.; Brunner, D.; Folini, D.; Solberg, S.; Klausen, J.; Buchmann, B. Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos. Chem. Phys. 2010, 10, 3561–3581. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yan, X.; Cai, Z.; Zhang, Y. Effect of rainfall on the diurnal variations of CH4, CO2, and N2O fluxes from a municipal solid waste landfill. Sci. Total Environ. 2013, 442, 73–76. [Google Scholar] [CrossRef]
- Ferrarese, S.; Apadula, F.; Bertiglia, F.; Cassardo, C.; Ferrero, A.; Fialdini, L.; Francone, C.; Heltai, D.; Lanza, A.; Longhetto, A.; et al. Inspection of high–concentration CO2 events at the Plateau Rosa Alpine station. Atmos. Pollut. Res. 2015, 6, 415–427. [Google Scholar] [CrossRef] [Green Version]
- McClure, C.D.; Jaffe, D.A.; Gao, H. Carbon Dioxide in the Free Troposphere and Boundary Layer at the Mt. Bachelor Observatory. Aerosol. Air Qual. Res. 2016, 16, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Apadula, F.; Cassardo, C.; Ferrarese, S.; Heltai, D.; Lanza, A. Thirty Years of Atmospheric CO2 Observations at the Plateau Rosa Station, Italy. Atmosphere 2019, 10, 418. [Google Scholar] [CrossRef] [Green Version]
- Giostra, U.; Furlani, F.; Arduini, J.; Cava, D.; Manning, A.J.; O’Doherty, S.J.; Reimann, S.; Maione, M. The determination of a “regional” atmospheric background mixing ratio for anthropogenic greenhouse gases: A comparison of two independent methods. Atmos. Environ. 2011, 45, 7396–7405. [Google Scholar] [CrossRef]
- Yuan, Y.; Ries, L.; Petermeier, H.; Trickl, T.; Leuchner, M.; Couret, C.; Sohmer, R.; Meinhardt, F.; Menzel, A. On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016. Atmos. Chem. Phys. 2019, 19, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Bacastow, R.B.; Keeling, C.D.; Whorf, T.P. Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. Atmos. 1985, 90, 10529–10540. [Google Scholar] [CrossRef]
- Keeling, C.D.; Guenther, P.R.; Whorf, T.P. An Analysis of the Concentration of Atmospheric Carbon Dioxide at Fixed Land Stations and over the Oceans Based on Discrete Samples and Daily Averaged Continuous Measurements. UC San Diego Library—Scripps Digital Collection. 1986. Available online: https://escholarship.org/uc/item/5j8445rz (accessed on 30 December 2012).
- Keeling, C.D.; Piper, S.C.; Heimann, M. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In Aspects of Climate Variability in the Pacific and the Western Americas; American Geophysical Union (AGU): Washington, DC, USA, 1989; pp. 305–363. ISBN 978-1-118-66428-5. [Google Scholar]
- Thoning, K.W.; Tans, P.P.; Komhyr, W.D. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. Atmos. 1989, 94, 8549–8565. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 1st ed.; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Koopmans, L.H. The Spectral Analysis of Time Series; Elsevier: Amsterdam, The Netherlands, 1974; ISBN 978-0-12-419250-8. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Chamard, P.; Thiery, F.; Sarra, A.D.; Ciattaglia, L.; Silvestri, L.D.; Grigioni, P.; Monteleone, F.; Piacentino, S. Interannual variability of atmospheric CO2 in the Mediterranean: Measurements at the island of Lampedusa. Tellus B Chem. Phys. Meteorol. 2003, 55, 83–93. [Google Scholar] [CrossRef]
- Ruckstuhl, A.F.; Henne, S.; Reimann, S.; Steinbacher, M.; Vollmer, M.K.; O’Doherty, S.; Buchmann, B.; Hueglin, C. Robust extraction of baseline signal of atmospheric trace species using local regression. Atmos. Meas. Tech. 2012, 5, 2613–2624. [Google Scholar] [CrossRef] [Green Version]
- Bond, S.W.; Vollmer, M.K.; Steinbacher, M.; Henne, S.; Reimann, S. Atmospheric molecular hydrogen (H2): Observations at the high-altitude site Jungfraujoch, Switzerland. Tellus B Chem. Phys. Meteorol. 2011, 63, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Brantley, H.L.; Hagler, G.S.W.; Kimbrough, E.S.; Williams, R.W.; Mukerjee, S.; Neas, L.M. Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos. Meas. Tech. 2014, 7, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Drewnick, F.; Böttger, T.; von der Weiden-Reinmüller, S.-L.; Zorn, S.R.; Klimach, T.; Schneider, J.; Borrmann, S. Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmos. Meas. Tech. 2012, 5, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- El Yazidi, A.; Ramonet, M.; Ciais, P.; Broquet, G.; Pison, I.; Abbaris, A.; Brunner, D.; Conil, S.; Delmotte, M.; Gheusi, F.; et al. Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4. Atmos. Meas. Tech. 2018, 11, 1599–1614. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Rella, C.W.; Göckede, M.; Hanson, C.; Yang, Z.; Law, B.E. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling. Atmos. Environ. 2014, 97, 94–108. [Google Scholar] [CrossRef]
- Valentino, F.L.; Leuenberger, M.; Uglietti, C.; Sturm, P. Measurements and trend analysis of O2, CO2 and delta 13C of CO2 from the high altitude research station Junfgraujoch, Switzerland—A comparison with the observations from the remote site Puy de Dôme, France. Sci. Total Environ. 2008, 391, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef] [Green Version]
- Cundari, V.; Colombo, T.; Ciattaglia, L. Thirteen years of atmospheric carbon dioxide measurements at Mt. Cimone station, Italy. Il Nuovo Cimento C 1995, 18, 33–47. [Google Scholar] [CrossRef]
- Ciattaglia, L. Interpretation of atmospheric CO2 measurements at Mt. Cimone (Italy) related to wind data. J. Geophys. Res. Ocean. 1983, 88, 1331–1338. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Fierli, F.; Marinoni, A.; Calzolari, F.; Duchi, R.; Burkhart, J.; Stohl, A.; Maione, M.; Arduini, J.; Bonasoni, P. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.). Atmos. Chem. Phys. 2013, 13, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Cristofanelli, P.; Brattich, E.; Decesari, S.; Landi, T.C.; Maione, M.; Putero, D.; Tositti, L.; Bonasoni, P. High-Mountain Atmospheric Research: The Italian Mt. Cimone WMO/GAW Global Station (2165 m a.s.l.), SpringerBriefs in Meteorology; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-61126-6. [Google Scholar]
- Cristofanelli, P.; Trisolino, P. ICOS RI, 2020. ICOS ATC CO2 Release, Monte Cimone (8.0 m), 2018-05-03–2020-05-31. Available online: https://meta.icos-cp.eu/objects/a5Jn7fKEo4dz8f4pKmqrQhPM (accessed on 30 December 2020).
- Cristofanelli, P.; Busetto, M.; Calzolari, F.; Ammoscato, I.; Gullì, D.; Dinoi, A.; Calidonna, C.R.; Contini, D.; Sferlazzo, D.; Di Iorio, T.; et al. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem. Sci. Anthr. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Donateo, A.; Lo Feudo, T.; Marinoni, A.; Dinoi, A.; Avolio, E.; Merico, E.; Calidonna, C.R.; Contini, D.; Bonasoni, P. Characterization of In Situ Aerosol Optical Properties at Three Observatories in the Central Mediterranean. Atmosphere 2018, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Becagli, S.; Anello, F.; Bommarito, C.; Cassola, F.; Calzolai, G.; Di Iorio, T.; di Sarra, A.; Gómez-Amo, J.-L.; Lucarelli, F.; Marconi, M.; et al. Constraining the ship contribution to the aerosol of the central Mediterranean. Atmos. Chem. Phys. 2017, 17, 2067–2084. [Google Scholar] [CrossRef] [Green Version]
- Ciardini, V.; Contessa, G.M.; Falsaperla, R.; Gómez-Amo, J.L.; Meloni, D.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D.; di Sarra, A. Global and Mediterranean climate change: A short summary. Ann. Super Sanità 2016, 52, 325–337. [Google Scholar]
- Artuso, F.; Chamard, P.; Piacentino, S.; Sferlazzo, D.M.; De Silvestri, L.; di Sarra, A.; Meloni, D.; Monteleone, F. Influence of transport and trends in atmospheric CO2 at Lampedusa. Atmos. Environ. 2009, 43, 3044–3051. [Google Scholar] [CrossRef]
- Tans, P.; Thoning, K. How We Measure Background CO2 Levels on Mauna Loa, NOAA Earth System Research Laboratory, Boulder, Colorado. September 2008. Available online: https://www.esrl.noaa.gov/gmd/ccgg/about/co2_measurements.html (accessed on 2 January 2021).
- Carslaw, D.C.; The Openair Manual—Open-Source Tools for Analysing Air Pollution Data. Manual for Version 2.6-5, University of York. 2019. Available online: https://davidcarslaw.com/files/openairmanual.pdf (accessed on 2 January 2021).
- Zellweger, C.; Steinbacher, M.; Buchmann, B. System and Performance Audit of Surface Ozone, Carbon Monoxide, Methane, Carbon Dioxide and Nitrous Oxide at the at the Global GAW Station Mt. Cimone, Italy, June 2018, in WCC-Empa Report 18/1. Available online: https://www.empa.ch/documents/56101/250799/Mt+Cimone+2018/14c2416b-a986-4562-b854-316cd08aa571 (accessed on 30 December 2020).
- Perrino, C.; Gilardoni, S.; Landi, T.; Abita, A.; Ferrara, I.; Oliverio, S.; Busetto, M.; Calzolari, F.; Catrambone, M.; Cristofanelli, P.; et al. Air Quality Characterization at Three Industrial Areas in Southern Italy. Front. Environ. Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Patra, P.K.; Takigawa, M.; Iwasaki, T.; Nakazawa, T. Global-scale transport of carbon dioxide in the troposphere. J. Geophys. Res. 2008, 113, D15301. [Google Scholar] [CrossRef] [Green Version]
- Murayama, S.; Taguchi, S.; Higuchi, K. Interannual variation in the atmospheric CO2 growth rate: Role of atmospheric transport in the Northern Hemisphere. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
PRS | CMN—ISAC | CMN—CAMM | CGR | LMP |
---|---|---|---|---|
2014–2018 | 2018 | 2015–2018 | 2015–2018 | 2014–2018 |
Dataset | PRS n = 6 S = 0.36 | CMN—ISAC n = 5 S = 0.52 | CMN—CAMM n = 6 S = 0.36 | CGR n = 1 S = 1.43 | LMP n = 10 S = 0.30 |
---|---|---|---|---|---|
Original | 0.78 | 4.47 | 3.80 | 8.90 | 0.58 |
Background | 0.33 (11%) | 1.59 (38%) | 0.75 (20%) | 1.60 (65%) | 0.64 (6%) |
Dataset | PRS n winter = 4 n spring = 8 n summer = 6 n autumn = 5 S = 0.36 | CMN-ISAC n winter = 4 n spring = 10 n summer = 2 n autumn = 10 S = 0.52 | CMN-CAMM n winter = 5 n spring = 14 n summer = 6 n autumn = 7 S = 0.36 | CGR n winter = 1 n spring = 1 n summer = 2 n autumn = 2 S = 1.43 | LMP n winter = 8 n spring = 8 n summer = 5 n autumn = 14 S = 0.30 |
---|---|---|---|---|---|
Original | 0.78 | 4.47 | 3.80 | 8.90 | 0.58 |
Background | 0.33 (15%) | 2.00 (31%) | 0.79 (21%) | 1.80 (56%) | 0.81 (10%) |
Dataset | CMN—ISAC | CMN—CAMM | LMP | CGR | PRS |
---|---|---|---|---|---|
Annually-derived n | 38.2% | 20.3% | 6.1% | 65.3% | 10.7% |
Seasonally-derived n | 31.2% | 21.4% | 9.9% | 55.6% | 14.5% |
Fitting Parameters | PRS | CMN—CAMM | CGR | LMP |
---|---|---|---|---|
A | 1.42 | 0.96 | 1.11 | −1.16 |
B | 5.11 | 6.00 | 4.92 | 4.40 |
c1 (ppm) | 397.17 | 400.00 | 401.29 | 397.60 |
c2 (ppm month−1) | 0.216 | 0.225 | 0.182 | 0.214 |
φ1 (months) | −14.50 | −1.72 | −0.11 | −0.02 |
φ2 (months) | 1.37 | 1.98 | 3.83 | 1.10 |
r2 | 0.94 | 0.96 | 0.90 | 0.86 |
n. points | 59 | 47 | 44 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trisolino, P.; di Sarra, A.; Sferlazzo, D.; Piacentino, S.; Monteleone, F.; Di Iorio, T.; Apadula, F.; Heltai, D.; Lanza, A.; Vocino, A.; et al. Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network. Atmosphere 2021, 12, 246. https://doi.org/10.3390/atmos12020246
Trisolino P, di Sarra A, Sferlazzo D, Piacentino S, Monteleone F, Di Iorio T, Apadula F, Heltai D, Lanza A, Vocino A, et al. Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network. Atmosphere. 2021; 12(2):246. https://doi.org/10.3390/atmos12020246
Chicago/Turabian StyleTrisolino, Pamela, Alcide di Sarra, Damiano Sferlazzo, Salvatore Piacentino, Francesco Monteleone, Tatiana Di Iorio, Francesco Apadula, Daniela Heltai, Andrea Lanza, Antonio Vocino, and et al. 2021. "Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network" Atmosphere 12, no. 2: 246. https://doi.org/10.3390/atmos12020246
APA StyleTrisolino, P., di Sarra, A., Sferlazzo, D., Piacentino, S., Monteleone, F., Di Iorio, T., Apadula, F., Heltai, D., Lanza, A., Vocino, A., Caracciolo di Torchiarolo, L., Bonasoni, P., Calzolari, F., Busetto, M., & Cristofanelli, P. (2021). Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network. Atmosphere, 12(2), 246. https://doi.org/10.3390/atmos12020246