Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Non-Stationary GEV Distribution
3. Results
3.1. Parameter Estimation and Uncertainty
3.2. Future Rainfall Extremes
4. Discussion and Application
4.1. Decision Making from Ensemble Average and Uncertainty
4.2. Uncertainty of Rate of Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How many model runs do we need? Int. J. Climatol. 2017, 37, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Lee, O.; Jang, J.; Jang, S.; Kim, S. Future intensity–depth–frequency curves estimation in Korea under representative concentration pathway scenarios of Fifth assessment report using scale-invariance method. Int. J. Climatol. 2019, 39, 887–900. [Google Scholar] [CrossRef]
- Manola, I.; Hurk, B.; Moel, H.; Aerts, J. Future extreme precipitation intensities based on historic events. Hydrol. Earth Syst. Sci. 2018, 22, 3777–3788. [Google Scholar] [CrossRef] [Green Version]
- Dahm, R.; Bhardwaj, A.; Weiland, F.; Corzo, G.; Bouwer, L. A temperature-scaling approach for projecting changes in short duration rainfall extremes from GCM Data. Water 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Won, J.; Choi, C.; Lee, O.; Kim, S. Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Sci. Total Environ. 2020, 744, 140701. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Bradley, R. NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs. Clim. Dyn. 2016, 46, 1257–1276. [Google Scholar] [CrossRef]
- Farnham, D.; Doss-Gollin, J.; Lall, U. Regional extreme precipitation events: Robust inference from credibly simulated GCM variables. Water Resour. Res. 2018, 54, 3809–3824. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.; Lee, O.; Yoon, J.; Kim, S. Estimation of Probable Maximum Precipitation in Korea using a Regional Climate Model. Water 2017, 9, 240. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.; Kim, S. Impact of Sea Surface Temperature and Surface Air Temperature on Maximizing Typhoon Rainfall: Focusing on Typhoon Maemi in Korea. Adv. Meteorol. 2019, 2019, 1930453. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.; Sim, I.; Kim, S. Application of the non-stationary peak-over-threshold methods for deriving rainfall extremes from temperature projections. J. Hydrol. 2020, 585, 124318. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.; Lee, O.; Cha, D.; Kim, S. Uncertainty quantification of future design rainfall depths in Korea. Atmosphere 2020, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Mishra, V. Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep. 2017, 7, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasko, C.; Sharma, A. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. J. Hydrol. 2017, 544, 575–590. [Google Scholar] [CrossRef]
- Sim, I.; Lee, O.; Kim, S. Sensitivity analysis of extreme daily rainfall depth in summer season on surface air temperature and dew-point temperature. Water 2019, 11, 771. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, P. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 2012, 5, 697. [Google Scholar] [CrossRef]
- Lenderink, G.; Attema, J. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett. 2015, 10, 085001. [Google Scholar] [CrossRef]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J. Hydrol. 2020, 590, 125249. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Tian, Y. Impact of climate change on 24-h design rainfall depth estimation in Qiantang River Basin, East China. Hydrol. Process. 2012, 26, 4067–4077. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, Y.; Park, J.; Kim, M.; Cho, C.; Baek, H. Assessing changes in observed and future projected precipitation extremes in South Korea. Int. J. Climatol. 2015, 35, 1069–1078. [Google Scholar] [CrossRef]
- Li, J.; Evans, J.; Johnson, F.; Sharma, A. A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM. J. Hydrol. 2017, 547, 413–427. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.; Li, G.; Wan, H.; Cannon, A. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 2017, 10, 255–259. [Google Scholar] [CrossRef]
- Agilan, V.; Umamahesh, N. Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve. Int. J. Climatol. 2017, 37, 1265–1281. [Google Scholar] [CrossRef]
- Sen, S.; He, J.; Kasiviswanathan, K. Uncertainty quantification using the particle filter for non-stationary hydrological frequency analysis. J. Hydrol. 2020, 584, 12466. [Google Scholar] [CrossRef]
- Tramblay, Y.; Neppel, L.; Carreau, J.; Sanchez-Gomez, E. Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate. Hydrol. Process. 2012, 26, 3934–3944. [Google Scholar] [CrossRef]
- Tramblay, Y.; Neppel, L.; Carreau, J.; Najib, K. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrol. Sci. J. 2013, 58, 280–294. [Google Scholar] [CrossRef]
- Yilmaz, A.; Hossain, I.; Perera, B. Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: A case study of Melbourne. Hydrol. Earth Syst. Sci. 2014, 18, 4065–4076. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Mujumdar, P. Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. J. Hydrol. 2015, 521, 217–231. [Google Scholar] [CrossRef]
- Sarhadi, A.; Soulis, E. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res. Lett. 2017, 44, 2454–2463. [Google Scholar] [CrossRef]
- Agilan, V.; Umamahesh, N. What are the best covariates for developing nonstationary rainfall Intensity-Duration-Frequency relationship? Adv. Water Resour. 2017, 101, 11–22. [Google Scholar] [CrossRef]
- Jung, B.; Lee, O.; Kim, K.; Kim, S. Non-stationary frequency analysis of extreme sea level using POT approach. J. Korean Soc. Hazard Mitig. 2018, 18, 631–638. [Google Scholar] [CrossRef]
- Salas, J.; Obeysekera, J.; Vogel, R. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [Google Scholar] [CrossRef]
- Ouarda, T.; Yousef, L.; Charron, C. Non-stationary intensity-duration-frequency curves integrating information concerning teleconnections and climate change. Int. J. Climatol. 2019, 39, 2306–2323. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D.; Montanari, A. Negligent killing of scientific concepts: The stationarity case. Hydrol. Sci. J. 2014, 60, 1174–1183. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef] [Green Version]
- De Luca, D.; Galasso, L. Stationary and non-stationary frameworks for extreme rainfall time series in southern Italy. Water 2018, 10, 1477. [Google Scholar] [CrossRef] [Green Version]
- Ouarda, T.; Charron, C.; St-Hilaire, A. Uncertainty of stationary and nonstationary models for rainfall frequency analysis. Int. J. Climatol. 2020, 40, 2373–2392. [Google Scholar] [CrossRef]
- Ganguli, P.; Coulibaly, P. Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves? Hydrol. Earth Syst. Sci. 2017, 21, 6461–6483. [Google Scholar] [CrossRef] [Green Version]
- Iliopoulou, T.; Koutsoyiannis, D.; Montanari, A. Characterizing and modeling seasonality in extreme rainfall. Water Resour. Res. 2018, 54, 6242–6258. [Google Scholar] [CrossRef]
- Agilan, V.; Umamahesh, N. Covariate and parameter uncertainty in non-stationary rainfall IDF curve. Int. J. Climatol. 2018, 38, 365–383. [Google Scholar] [CrossRef]
- Korea Meteorological Administration Nalssynuri. Available online: www.weather.go.kr (accessed on 6 February 2020).
- Park, C.; Cha, D.; Kim, G.; Lee, G.; Lee, D.; Suh, M.; Hong, S.; Ahn, J.; Min, S. Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models. Int. J. Climatol. 2020, 40, 2270–2284. [Google Scholar] [CrossRef]
- Cannon, A.; Sobie, S.; Murdock, T. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Abbaspour, K.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-Alpine/Alpine thur watershed using SWAT. J. Hydrol. 2017, 333, 413–430. [Google Scholar] [CrossRef]
- Shiau, J. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 2003, 17, 42–57. [Google Scholar] [CrossRef]
- Serinaldi, F. Dismissing return periods. Stoch. Environ. Res. Risk Assess. 2015, 29, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- De Luca, D.; Biondi, D. Bivariate return period for design hyetograph and relationship with T-Year design flood peak. Water 2017, 9, 673. [Google Scholar] [CrossRef] [Green Version]
GCM | HadGEM2-AO (H2) | MPI-ESM-LR (E6) | ||||||
---|---|---|---|---|---|---|---|---|
RCM | MM5 | RSM | RegCM4 | WRF | MM5 | RSM | RegCM4 | WRF |
Temporal resolution | 3-h | |||||||
Spatial resolution | 12.5 km | |||||||
Variables | Atmospheric pressure, maximum/minimum surface air temperature, specific humidity, precipitation | |||||||
Scenarios | RCP 4.5/RCP 8.5 | |||||||
Temporal domain | Present: 1981–2010 Future: 2021–2050 |
Site | Parameter | Stationary s | Non-Stationary n_1 | Non-Stationary n_2 |
---|---|---|---|---|
Chuncheon | alpha_1 | 47.1039 | 3.2278 | 3.3694 |
alpha_2 | 0.0273 | 0.0224 | ||
beta | −0.1498 | −0.1081 | −0.0956 | |
x_o | 110.8374 | 111.3025 | 111.1759 | |
nllh | 209.4338 | 209.2788 | 209.3763 | |
Cheonan | alpha_1 | 35.6845 | 2.5806 | 2.7541 |
alpha_2 | 0.0417 | 0.0363 | ||
beta | −0.0948 | −0.0624 | −0.0492 | |
x_o | 105.3882 | 104.6429 | 106.0307 | |
nllh | 193.561 | 194.4651 | 192.0164 |
Site | Factor | Parameter | Stationary s | Non-Stationary n_1 | Non-Stationary n_2 |
---|---|---|---|---|---|
Chuncheon | P | α1 | 0.4651 | 0.4886 | |
α2 | 2.6020 | 3.5664 | |||
α | 0.5465 | 0.5306 | 0.5219 | ||
β | −2.6478 | −3.1391 | −2.9063 | ||
xo | 0.2736 | 0.2659 | 0.2516 | ||
q | 50-yr | 0.8356 | 0.7329 (0.7003) | 0.5952 (0.5572) | |
Cheonan | P | α1 | 0.9012 | 0.7639 | |
α2 | 2.4406 | 2.6169 | |||
α | 0.4782 | 0.4909 | 0.5527 | ||
β | −2.9555 | −5.5192 | −5.2905 | ||
xo | 0.2037 | 0.2236 | 0.1876 | ||
q | 50-yr | 0.5998 | 0.8057 0.7624 | 0.5978 (0.5706) |
Site | nllh | AIC | p-Factor | q-Factor |
---|---|---|---|---|
Chuncheon | n1 | s | n2 | n2 |
Cheonan | n2 | s | s | n2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Won, J.; Choi, J.; Lee, J.; Jang, S.; Lee, O.; Kim, S. Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model. Atmosphere 2021, 12, 227. https://doi.org/10.3390/atmos12020227
Seo J, Won J, Choi J, Lee J, Jang S, Lee O, Kim S. Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model. Atmosphere. 2021; 12(2):227. https://doi.org/10.3390/atmos12020227
Chicago/Turabian StyleSeo, Jiyu, Jeongeun Won, Jeonghyeon Choi, Jungmin Lee, Suhyung Jang, Okjeong Lee, and Sangdan Kim. 2021. "Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model" Atmosphere 12, no. 2: 227. https://doi.org/10.3390/atmos12020227
APA StyleSeo, J., Won, J., Choi, J., Lee, J., Jang, S., Lee, O., & Kim, S. (2021). Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model. Atmosphere, 12(2), 227. https://doi.org/10.3390/atmos12020227