Air Pollution Associated with Total Suspended Particulate and Particulate Matter in Cement Grinding Plant in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Information
2.2. Study and Sampling Design
2.3. Dust Monitoring Procedure
2.4. Silica Analysis and Processing
3. Results and Discussion
3.1. Dust Sources and Exposed Job Groups in the Cement Grinding Processes
3.2. Excessive Total Dust Concentration in the Cement Grinding Processes
3.3. Wide Range Distribution of Particulate Matters in the Cement Grinding Process
3.4. The Correlation between Concentration Levels of Respirable Dust and Silica Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/ (accessed on 6 October 2021).
- WHO—Occupational and Environmental Health Department of Protection of the Human Environment World Health Organization. WHO/SDE/OEH/99.14, Hazard Prevention and Control in the Work Environment: Airborne Dust; Occupational and Environmental Health Department of Protection of the Human Environment World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Calvert, J.G. Glossary of atmospheric chemistry terms. Pure Appl. Chem. 1990, 62, 2167–2219. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. EN 481:1993-09, Workplace Atmospheres: Size Fraction Definitions for Measurement of Airborne Particles; Brussels: European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- Rushton, L. Chronic obstructive pulmonary disease and occupational exposure to silica. Rev. Environ. Health 2007, 22, 255–272. [Google Scholar] [CrossRef]
- Anlar, H.G.; Bacanli, M.; İritaş, S.; Bal, C.; Kurt, T.; Tutkun, E.; Yilmaz, O.H.; Basaran, N. Effects of occupational silica exposure on oxidative stress and immune system parameters in ceramic workers in turkey. J. Toxicol. Environ. Health A 2017, 80, 688–696. [Google Scholar] [CrossRef]
- Vacek, P.M.; Verma, D.K.; Graham, W.G.; Callas, P.W.; Bibbs, G.W. Mortality in Vermont granite workers and its association with silica exposure. Occup. Environ. Med. 2011, 68, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Park, R.; Rice, F.; Stayner, L.; Smith, R.; Gilbert, S.; Checkoway, H. Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: A quantitative risk assessment. Occup. Environ. Med. 2002, 59, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Parks, C.G.; Conrad, K.; Cooper, G.S. Occupational exposure to crystalline silica and autoimmune disease. Environ. Health Perspect. 1999, 107, 793–802. [Google Scholar]
- Liu, K.; Mu, M.; Fang, K.; Qian, Y.; Xue, S.; Hu, W.; Ye, M. Occupational exposure to silica and risk of heart disease: A systematic review with meta-analysis. BMJ Open 2020, 10, e029653. [Google Scholar] [CrossRef] [Green Version]
- Poornajaf, A.; Kakooei, H.; Hosseini, M.; Ferasati, F.; Kakaei, H. The Effect of Cement Dust on the Lung Function in a Cement Factory, Iran. Int. J. Occup. Hyg. 2010, 2, 74–78. [Google Scholar]
- Mehta, P.; Monteiro, P. Concrete: Structure, Properties, and Materials, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Ballal, S.G.; Ahmed, H.O.; Ali, B.A.; Albar, A.A.; Alhasan, A.Y. Pulmonary Effects of Occupational Exposure to Portland Cement: A Study from Eastern Saudi Arabia. Int. J. Occup. Environ. Health 2004, 10, 272–277. [Google Scholar] [CrossRef]
- Mirzaee, R.; Kebriaei, A.; Hashemi, S.; Sadeghi, M.; Shahrakipour, M. Effects of exposure to Portland cement dust on lung function in Portland cement factory workers in Khash, Iran. Iranian J. Environ. Health Sci. Eng. 2008, 5, 201–206. [Google Scholar]
- Oleru, U.G. Pulmonary function and symptoms of Nigerian workers exposed to cement dust. Environ. Res. 1984, 33, 379–385. [Google Scholar] [CrossRef]
- Vyskocil, J. The problem of chronic bronchitis in cement workers. Rev. Czechoslov. Med. 1962, 8, 38–52. [Google Scholar]
- Izycki, J.; Gielec, L.; Sulkowski, W.; Kowalska, S. Respiratory tract in workers chronically exposed to cement dust. Med. Pr. 1979, 30, 241–246. [Google Scholar]
- Laraqui Hossini, C.H.; Laraqui Hossini, O.; Rahhali, A.E.; Tripodi, D.; Caubet, A.; Belamallem, I.; Verger, C.; Hakam, K.; Alaoui Yazidi, A. Respiratory symptoms and ventilatory disorders among a group of cement workers in Morocco. Rev. Mal. Respir. 2002, 19, 183–189. [Google Scholar] [PubMed]
- MacieJewska, A.; Bielichowska-Cybula, G. Biological effects of cement dust. Med. Pr. 1991, 42, 281–290. [Google Scholar]
- Vestbo, J.; Knudsen, K.M.; Raffn, E.; Korsgaard, B.; Rasmussen, F.V. Exposure to cement dust at a Portland cement factory and the risk of cancer. Br. J. Ind. Med. 1991, 48, 803–807. [Google Scholar] [CrossRef]
- Maier, H.; Gewelke, U.; Dietz, A.; Thamm, H.; Heller, W.D.; Weidauer, H. Laryngeal cancer and occupation: Results of the Heidelberg laryngeal cancer study. HNO 1992, 40, 44–51. [Google Scholar] [PubMed]
- Noor, H.; Yap, C.L.; Zolkepli, O.; Faridah, M. Effect of exposure to dust on lung function of cement factory workers. Med. J. Malaysia 2000, 55, 51–57. [Google Scholar]
- Meo, S.A. Chest radiological findings in Pakistani cement mill workers. Saudi Med. J. 2003, 24, 287–290. [Google Scholar]
- Abou-Taleb, A.N.M.; Musaiger, A.O.; Abdelmoneim, R.B. Health status of cement workers in the United Arab Emirates. J. R. Soc. Health 1995, 115, 378–381. [Google Scholar] [CrossRef]
- Ahmad, R.; Akhter, S. Effects of exposure to cement dust on hemoglobin concentration and total count of RBC in cement factory workers. J. Bangladesh Soc. Physiol. 2018, 13, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Initial Cement Industry Report. Available online: http://www.fpts.com.vn/FileStore2/ (accessed on 20 February 2021).
- Decision No. 1266/QĐ-TTg. Approval of Construction Material Development Strategy in the Period from 2021 to 2030 in Vietnam. Available online: https://thuvienphapluat.vn/Quyet-dinh-1266-QD-TTg-2020 (accessed on 29 December 2020).
- Fuente, A.; Hickson, L. Noise-induced hearing loss in Asia. Int. J. Audiol. 2011, 50, 3–10. [Google Scholar] [CrossRef]
- Thai, T.; Kučera, P.; Bernatik, A. Noise Pollution and Its Correlations with Occupational Noise-Induced Hearing Loss in Cement Plants in Vietnam. Int. J. Environ. Res. Public Health 2021, 18, 4229. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Pham, T.T. Air pollution in Ho Chi Minh City, Vietnam. In Proceedings of the Conference on Better Air Quality in Asian and Pacific Rim Cities (BAQ 2002), Hong Kong, China, 16–18 December 2002. [Google Scholar]
- GeenID. Air Quality in Vietnam in 2017. Available online: http://en.greenidvietnam.org.vn/ (accessed on 8 October 2021).
- Ho, B.Q. Modeling PM10 in Ho Chi Minh City, Vietnam and evaluation of its impact on human health. Sustain. Environ. Res. 2017, 27, 95–102. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Luong, L.T.M.; Dang, T.N.; Huong, N.T.T.; Phung, D.; Tran, L.K.; Dung, D.V.; Thai, P.K. Particulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young children. Environ. Pollut. 2019, 257, 113424. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.; Hien, T.T.; Linh, H.N.; Luong, L.M.; Morawska, L.; Chu, C.; Binh, N.D.; Thai, P.K. Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Sci. Total Environ. 2016, 557, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- General Statistics Office. Ho Chi Minh Population 2020. Available online: https://www.gso.gov.vn/en/ (accessed on 8 October 2021).
- National Technical Regulation. Permissible Exposure Limit Value of Dust at the Workplace: QCVN 02:2019/BYT. Available online: https://thuvienphapluat.vn/QCVN02:2019/BYT (accessed on 17 May 2021).
- OHSA. Occupational Safety and Health Standards No. 1910.1000—Air Contaminant. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000 (accessed on 5 July 2021).
- Mwaiselage, J.; Bråtveit, M.; Moen, B.; Yost, M. Variability in dust exposure in a cement factory in Tanzania. Ann. Occup. Hyg. 2005, 49, 511–519. [Google Scholar] [PubMed] [Green Version]
- Kakooei, H.; Kakouei, A.A.; Poornajaf, A.; Ferasaty, F. Variability in total dust exposure in a cement factory. Ind. Health 2012, 50, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Al-Zboon, K.K. Indoor air quality in cement industry. Res. J. Chem. 2019, 9, 8–13. [Google Scholar]
- Ahmad, W.; Nisa, S.; Nafees, M.; Hussain, R. Assessment of Particulate Matter (PM10 & PM2.5) and Associated Health Problems in Different Areas of Cement Industry, Hattar, Haripur. J. Sci. Technol. 2015, 37, 7–15. [Google Scholar]
- Mbelambela, E.P.; Muchanga, S.M.J.; Villanueva, A.F.; Eitoku, M.; Yasumitsu-Lovell, K.; Hirota, R.; Shimotake, Y.; Sokolo, G.J.; Mori, A.; Suganuma, N. Biomass energy, particulate matter (PM2.5), and the prevalence of chronic obstructive pulmonary disease (COPD) among Congolese women living near of a cement plant, in Kongo Central Province. Environ. Sci. Pollut. Res. Int. 2020, 27, 40706–40714. [Google Scholar] [CrossRef] [PubMed]
- Anchez-Sober, F.; Rovira, J.; Mari, M.; Sierra, J.; Nadal, M.; Domingo, J.; Schuhmacher, M. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- Marcon, A.; Pesce, G.; Girardi, P.; Marchetti, P.; Blengio, G.; de Zolt Sappadina, S.; Falcone, S.; Frapporti, G.; Predicatori, F.; de Marco, R. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy. Int. J. Hyg. Environ. Health 2014, 217, 386–391. [Google Scholar] [CrossRef]
- Nkhama, E.; Ndhlovu, M.; Dvonch, J.T.; Lynam, M.; Mentz, G.; Siziya, S.; Voyi, K. Effects of Airborne Particulate Matter on Respiratory Health in a Community near a Cement Factory in Chilanga, Zambia: Results from a Panel Study. Int. J. Environ. Res. Public Health 2017, 14, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masud, Y.; Roohollah, R.; Ahmad, Z.; Mehdi, F.; Hosna, J. Exposure to high levels of PM2.5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchem. J. 2019, 150, 104174. [Google Scholar] [CrossRef]
- Ali, A.; Mehdi, F.; Ahmad, J.; Ahmad, Z.; Sajad, M. Particulate matter and bioaerosols during Middle East dust storms events in Ilam, Iran. Microchem. J. 2020, 152, 104280. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, C.G.; Song, H.S.; Lee, H.S.; Jung, M.S.; Kim, J.Y.; Park, C.H.; Ahn, S.C.; Yu, S.D. Ventilation impairment of residents around a cement plant. Ann. Occup. Environ. Med. 2015, 27, 3. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.Y.; Cho, E.B.; Oh, M.K.; Kweon, S.S.; Nam, H.S.; Kim, Y.D.; Kim, H. Increased incidence of respiratory tract cancers in people living near Portland cement plants in Korea. Int. Arch. Occup. Environ. Health 2017, 90, 859–864. [Google Scholar] [CrossRef]
- Garcia-Perez, J.; Morales-Piga, A.; Gomez-Barroso, D.; Tamayo-Uria, I.; Pardo Romaguera, E.; Lopez-Abente, G.; Ramis, R. Risk of bone tumors in children and residential proximity to industrial and urban areas: New findings from a case-control study. Sci. Total Environ. 2017, 579, 333–1342. [Google Scholar] [CrossRef]
- Ali, M.; Khan, I.; Hossain, M. Chemical Analysis of Ordinary Portland Cement of Bangladesh. Chem. Eng. Res. Bull. 2008, 12, 7–10. [Google Scholar] [CrossRef]
- Health and Safety Executive. Portland Cement Dust. Criteria for an Occupational Exposure Limit; HSE Books: Suffolk, UK, 1994.
- Omidianidost, A.; Gharavandi, S.; Azari, M.R.; Hashemian, A.H.; Ghasemkhani, M.; Rajati, F.; Jabari, M. Occupational Exposure to Respirable Dust, Crystalline Silica and Its Pulmonary Effects among Workers of a Cement Factory in Kermanshah, Iran. Tanaffos 2019, 18, 157–162. [Google Scholar] [PubMed]
- Kakooei, H.; Gholami, A.; Ghasemkhani, M.; Hosseini, M.; Panahi, D.; Pouryaghoub, G. Dust exposure and respiratory health effects in cement production. Acta Med. Iran. 2012, 50, 122–127. [Google Scholar] [PubMed]
- Johnson, C.R.; Knowles, J.; Rønnekleiv, B. Addressing the Health Risks of Silica Cement: A Custom Solution for Norway. In Proceedings of the SPE Bergen One Day Seminar, Bergen, Norway, 20 April 2016. [Google Scholar] [CrossRef]
Process | Job Group | Department | No. Exposed Worker | Exposure Duration in 2020 (hrs/Shift) | Key Daily Tasks | |
---|---|---|---|---|---|---|
Mean (SD) | Range | |||||
Jetty | Crane operator | Production | 4 | 2.17 (0.77) | 0.93–3.55 | Operation of the crane to unload raw materials from the barges; |
Pre-grinding | Process operator | Production | 8 | 4.01 (1.36) | 1.69–5.97 | Ensure the stable operation of the crusher and other equipment; Remotely control from CCR; |
Cement mill | Process operator | Production | 8 | 4.01 (1.36) | 1.69–5.97 | Ensure the stable operation of the mill and equipment; Remotely control from CCR; |
Cement dispatch | ||||||
Packing machine | Packer operator | Production | 12 | 1.80 (0.65) | 0.35–2.34 | Operation of the packing machine manually to pack cement bag as customer’s request; |
Cement bag dispatch | Stevedore | Logistics (third-party) | 12 | 1.80 (0.65) | 0.35–2.34 | Loading cement bag to customer’s trucks and barges; |
Bulk dispatch system | Logistic operator | Logistics | 8 | 2.56 (0.96) | 1.23–4.40 | Remotely operating the bulk dispatch system in CCR; |
Stevedore | Logistics (contractor) | 2 | 2.56 (0.96) | 1.23–4.40 | Manually opening and closing the cap of the bulk tanker; |
Process | Sub-Process | TSP (mg m−3) | PEL (mg m−3) | |||
---|---|---|---|---|---|---|
Mean (SD) | Range | |||||
P1 | Jetty | S1 | Unloading raw material | 0.21 (0.11) | 0.11–0.31 | 4.0 |
P2 | Raw materials storage and handling | S2 | Raw material storage and preparation | 0.83 (0.42) | 0.21–1.14 | 4.0 |
S3 | Connecting point between clinker silo and belt conveyor | 18.22 (15.16) | 3.11–38.24 | 4.0 | ||
P3 | Pre-grinding | S4 | Roller press | 2.93 (1.28) | 1.55–4.28 | 4.0 |
S5 | Feeding bin and conveyor | 25.62 (9.49) | 15.58–35.13 | 4.0 | ||
P4 | Cement grinding | S6 | Mill input | 5.63 (3.95) | 3.42–11.54 | 4.0 |
S7 | Mill output | 0.57 (0.29) | 0.21–0.81 | 4.0 | ||
P5 | Cement transferring and silo | S8 | Air-slide | 0.45 (0.34) | 0.12–0.84 | 4.0 |
S9 | Cement silo | 0.21 (0.08) | 0.11–0.29 | 4.0 | ||
P6 | Cement dispatch | S10 | Packing machine | 5.34 (1.67) | 3.52–7.45 | 4.0 |
S11 | Bulk dispatch | 0.15 (0.11) | 0.06–0.31 | 4.0 | ||
S12 | Bag dispatch by truck | 11.55 (7.74) | 4.13–18.84 | 4.0 | ||
S13 | Bag dispatch by barge | 13.40 (7.30) | 5.81–23.00 | 4.0 |
Sampling Location | Respirable Dust Composition (%) | Respirable Dust Concentration (mg m−3) | Silica Concentration (mg m−3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | TiO2 | MnO | P2O5 | Cl | |||
Bulk dispatch | 21.29 | 5.23 | 3.90 | 55.95 | 2.12 | 2.07 | 0.71 | 0.22 | 0.37 | 0.10 | 0.10 | 0.03 | 0.03 | 0.01 |
Packing machine | 20.77 | 5.75 | 3.73 | 52.57 | 2.59 | 2.24 | 0.64 | 0.38 | 0.47 | 0.10 | 0.31 | 0.14 | 0.66 | 0.14 |
Barge bag dispatch | 19.35 | 5.33 | 5.14 | 50.79 | 2.33 | 2.34 | 0.63 | 0.32 | 0.45 | 0.11 | 0.31 | 0.16 | 1.22 | 0.24 |
Truck bag dispatch | 20.97 | 5.77 | 3.40 | 51.87 | 2.64 | 2.31 | 0.64 | 0.38 | 0.44 | 0.11 | 0.30 | 0.18 | 0.77 | 0.16 |
Cement grinding | 19.62 | 4.89 | 2.88 | 55.88 | 2.12 | 1.66 | 0.72 | 0.27 | 0.34 | 0.08 | 0.30 | 0.25 | 0.33 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thai, T.; Bernatik, A.; Kučera, P. Air Pollution Associated with Total Suspended Particulate and Particulate Matter in Cement Grinding Plant in Vietnam. Atmosphere 2021, 12, 1707. https://doi.org/10.3390/atmos12121707
Thai T, Bernatik A, Kučera P. Air Pollution Associated with Total Suspended Particulate and Particulate Matter in Cement Grinding Plant in Vietnam. Atmosphere. 2021; 12(12):1707. https://doi.org/10.3390/atmos12121707
Chicago/Turabian StyleThai, Tinh, Ales Bernatik, and Petr Kučera. 2021. "Air Pollution Associated with Total Suspended Particulate and Particulate Matter in Cement Grinding Plant in Vietnam" Atmosphere 12, no. 12: 1707. https://doi.org/10.3390/atmos12121707
APA StyleThai, T., Bernatik, A., & Kučera, P. (2021). Air Pollution Associated with Total Suspended Particulate and Particulate Matter in Cement Grinding Plant in Vietnam. Atmosphere, 12(12), 1707. https://doi.org/10.3390/atmos12121707