Trends in the Diurnal Temperature Range over the Southern Slope of Central Himalaya: Retrospective and Prospective Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Gridded Data
2.3. Climatic Indices
2.4. Model Simulations
2.5. Methodology
3. Results and Discussion
3.1. Seasonal and Annual DTR Trends over Nepal
3.2. Factors Affecting DTR
3.3. Relation with Climatic Indices
3.4. Future Projection of DTR
4. Conclusions and Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Seasons | DTR Trend |
---|---|
Pre-monsoon | −0.06, p < 0.01 |
Monsoon | −0.02, p = 0.30 |
Post-monsoon | −0.01, p = 0.59 |
Winter | −0.05, p < 0.01 |
Annual | −0.03, p < 0.05 |
References
- Lee, W.; Kim, Y.; Sera, F.; Gasparrini, A.; Park, R.; Choi, H.M.; Prifti, K.; Bell, M.L.; Abrutzky, R.; Guo, Y. Projections of excess mortality related to diurnal temperature range under climate change scenarios: A multi-country modelling study. Lancet Planet. Health 2020, 4, e512. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, J. Diurnal asymmetry in future temperature changes over the main Belt and Road regions. Ecosyst. Health Sustain. 2020, 6, 1749530. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Qu, M.; Wan, J.; Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extrem. 2014, 4, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Joshi, M.K.; Pandey, A. Variations in diurnal temperature range over India: Under global warming scenario. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Sun, X.; Ren, G.; You, Q.; Ren, Y.; Xu, W.; Xue, X.; Zhan, Y.; Zhang, S.; Zhang, P. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 2019, 52, 3343–3356. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Thorne, P.; Donat, M.; Dunn, R.; Williams, C.; Alexander, L.; Caesar, J.; Durre, I.; Harris, I.; Hausfather, Z.; Jones, P. Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates. J. Geophys. Res. Atmos. 2016, 121, 5138–5158. [Google Scholar] [CrossRef] [Green Version]
- Christidis, N.; Mitchell, D.; Stott, P.A. Anthropogenic climate change and heat effects on health. Int. J. Climatol. 2019, 39, 4751–4768. [Google Scholar] [CrossRef]
- Singh, N.; Mhawish, A.; Ghosh, S.; Banerjee, T.; Mall, R. Attributing mortality from temperature extremes: A time series analysis in Varanasi, India. Sci. Total Environ. 2019, 665, 453–464. [Google Scholar] [CrossRef]
- Sunoj, V.J.; Shroyer, K.J.; Jagadish, S.K.; Prasad, P.V. Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environ. Exp. Bot. 2016, 130, 113–121. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Sun, X.-B.; Ren, G.-Y.; Shrestha, A.B.; Ren, Y.-Y.; You, Q.-L.; Zhan, Y.-J.; Xu, Y.; Rajbhandari, R. Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Adv. Clim. Chang. Res. 2017, 8, 157–165. [Google Scholar] [CrossRef]
- Jaswal, A.; Kore, P.; Singh, V. Trends in diurnal temperature range over India (1961–2010) and their relationship with low cloud cover and rainy days. J. Clim. Chang. 2016, 2, 35–55. [Google Scholar] [CrossRef]
- Shahid, S.; Harun, S.B.; Katimon, A. Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmos. Res. 2012, 118, 260–270. [Google Scholar] [CrossRef]
- Waqas, A.; Athar, H. Observed diurnal temperature range variations and its association with observed cloud cover in northern Pakistan. Int. J. Climatol. 2018, 38, 3323–3336. [Google Scholar] [CrossRef]
- Hamal, K.; Sharma, S.; Baniya, B.; Khadka, N.; Zhou, X. Inter-Annual Variability of Winter Precipitation Over Nepal Coupled With Ocean-Atmospheric Patterns During 1987–2015. Front. Earth Sci. 2020, 8, 161. [Google Scholar] [CrossRef]
- Pokharel, B.; Wang, S.Y.S.; Meyer, J.; Marahatta, S.; Nepal, B.; Chikamoto, Y.; Gillies, R. The east–west division of changing precipitation in Nepal. Int. J. Climatol. 2019, 40, 3348–3359. [Google Scholar] [CrossRef]
- Sharma, S.; Hamal, K.; Khadka, N.; Joshi, B.B. Dominant pattern of year-to-year variability of summer precipitation in Nepal during 1987–2015. Theor. Appl. Climatol. 2020, 142, 1071–1084. [Google Scholar] [CrossRef]
- Poudel, A.; Cuo, L.; Ding, J.; Gyawali, A.R. Spatio-temporal variability of the annual and monthly extreme temperature indices in Nepal. Int. J. Climatol. 2020, 40, 4956–4977. [Google Scholar] [CrossRef]
- Aryal, D.; Wang, L.; Adhikari, T.R.; Zhou, J.; Li, X.; Shrestha, M.; Wang, Y.; Chen, D. A Model-Based Flood Hazard Mapping on the Southern Slope of Himalaya. Water 2020, 12, 540. [Google Scholar] [CrossRef] [Green Version]
- Hamal, K.; Sharma, S.; Khadka, N.; Haile, G.G.; Joshi, B.B.; Xu, T.; Dawadi, B. Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorol. Appl. 2020, 27, e1950. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Khadka, N.; Chen, X.; Yong, N.; Thakuri, S.; Zheng, G.; Zhang, G. Evaluation of Glacial Lake Outburst Flood susceptibility using multi-criteria assessment framework in Mahalangur Himalaya. Front. Earth Sci. 2020, 8, 748. [Google Scholar] [CrossRef]
- Sharma, S.; Hamal, K.; Khadka, N.; Shrestha, D.; Aryal, D.; Thakuri, S. Drought characteristics over Nepal Himalaya and their relationship with climatic indices. Meteorol. Appl. 2021, 28, e1988. [Google Scholar] [CrossRef]
- Karki, M.; Mool, P.; Shrestha, A. Climate change and its increasing impacts in Nepal. Initiation 2009, 3, 30–37. [Google Scholar] [CrossRef]
- Dhimal, M.N.; Nepal, B.; Bista, B.; Neupane, T.; Dahal, S.; Pandey, A.R.; Jha, A.K. Assessing Trends of Heat Waves and Perception of People about Health Risks of Heat Wave in Nepal; Nepal Health Research Council: Kathmandu, Nepal, 2018.
- DHM. Observed Climate Trend Analysis in the Districts and Physiographic Regions of Nepal (1971–2014); Department of Hydrology and Meteorology: Kathmandu, Nepal, 2017; Volume 1, p. 74.
- Karki, R.; ul Hasson, S.; Gerlitz, L.; Talchabhadel, R.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising mean and extreme near-surface air temperature across Nepal. Int. J. Climatol. 2020, 40, 2445–2463. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, M.; Henderson, M.; Qi, Y.; Li, Y. Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000. J. Clim. 2004, 17, 4453–4462. [Google Scholar] [CrossRef]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506, 453–465. [Google Scholar] [CrossRef]
- Xia, X. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration. Ann. Geophys. 2013, 31, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Chung, J.X.; Radin Firdaus, R. Changes in Temperature Extremes and Their Relationship with ENSO in Malaysia from 1985 to 2018. Int. J. Climatol. 2021, 41, E2564–E2580. [Google Scholar] [CrossRef]
- Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A. Southeastern US Daily Temperature Ranges Associated with the El Niño–Southern Oscillation. J. Appl. Meteorol. Climatol. 2013, 52, 2434–2449. [Google Scholar] [CrossRef]
- Stjern, C.W.; Samset, B.H.; Boucher, O.; Iversen, T.; Lamarque, J.-F.; Myhre, G.; Shindell, D.; Takemura, T. How aerosols and greenhouse gases influence the diurnal temperature range. Atmos. Chem. Phys. 2020, 20, 13467–13480. [Google Scholar] [CrossRef]
- Touma, D.; Stevenson, S.; Lehner, F.; Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 2021, 12, 212. [Google Scholar] [CrossRef]
- Lindvall, J.; Svensson, G. The diurnal temperature range in the CMIP5 models. Clim. Dyn. 2015, 44, 405–421. [Google Scholar] [CrossRef]
- Wang, K.; Clow, G.D. The Diurnal Temperature Range in CMIP6 Models: Climatology, Variability, and Evolution. J. Clim. 2020, 33, 8261–8279. [Google Scholar] [CrossRef]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M.; Saeed, S.; Saeed, F.; Islam, M.N.; Ismail, M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Karki, R.; ul Hasson, S.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising Precipitation Extremes across Nepal. Climate 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Nayava, J.L. Rainfall in Nepal. Himal. Rev. 1980, 12, 1–18. [Google Scholar]
- Hamal, K.; Sharma, S.; Pokharel, B.; Shrestha, D.; Talchabhadel, R.; Shrestha, A.; Khadka, N. Changing pattern of drought in Nepal and associated atmospheric circulation. Atmos. Res. 2021, 262, 105798. [Google Scholar] [CrossRef]
- Sharma, S.; Khadka, N.; Hamal, K.; Baniya, B.; Luintel, N.; Joshi, B.B. Spatial and temporal analysis of precipitation and its extremities in seven provinces of Nepal (2001–2016). Appl. Ecol. Environ. Sci. 2020, 8, 64–73. [Google Scholar]
- Sharma, S.; Khadka, N.; Hamal, K.; Shrestha, D.; Talchabhadel, R.; Chen, Y. How Accurately Can Satellite Products (TMPA and IMERG) Detect Precipitation Patterns, Extremities, and Drought Across the Nepalese Himalaya? Earth Space Sci. 2020, 7, e2020EA001315. [Google Scholar] [CrossRef]
- Sharma, S.; Khadka, N.; Nepal, B.; Ghimire, S.K.; Luintel, N.; Hamal, K. Elevation Dependency of Precipitation over Southern Slope of Central Himalaya. Jalawaayu 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 1999, 12, 829–856. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-Y.; Miao, L.-J.; Jiang, Z.-H.; Wang, G.-J.; Gnyawali, K.R.; Zhang, J.; Zhang, H.; Fang, K.; He, Y.; Li, C. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Clim. Chang. Res. 2020, 11, 210–217. [Google Scholar] [CrossRef]
- Kattel, D.; Yao, T.; Yang, K.; Tian, L.; Yang, G.; Joswiak, D. Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol. 2013, 113, 671–682. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econom. J. Econom. Soc. 1945, 245–259. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Hirsch, R.M.; Slack, J.R. A non-parametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Mall, R.K.; Chaturvedi, M.; Singh, N.; Bhatla, R.; Singh, R.S.; Gupta, A.; Niyogi, D. Evidence of asymmetric change in diurnal temperature range in recent decades over different agro-climatic zones of India. Int. J. Climatol. 2021, 41, 2597–2610. [Google Scholar] [CrossRef]
- Hamal, K.; Khadka, N.; Rai, S.; Joshi, B.B.; Dotel, J.; Khadka, L.; Bag, N.; Ghimire, S.K.; Shrestha, D. Evaluation of the TRMM Product for Spatio-temporal Characteristics of Precipitation over Nepal (1998–2018). J. Inst. Sci. Technol. 2020, 25, 39–48. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Peng, Y.; Zhou, H. Diurnal temperature range variation and its causes in a semiarid region from 1957 to 2006. Int. J. Climatol. 2014, 34, 343–354. [Google Scholar] [CrossRef]
- Zhai, G.; Qi, J.; Chai, G. Impact of diurnal temperature range on cardiovascular disease hospital admissions among Chinese farmers in Dingxi (the Northwest China). BMC Cardiovasc. Disord. 2021, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, A.; Kore, P.; Singh, V. Variability and trends in low cloud cover over India during 1961–2010. Mausam 2017, 68, 235–252. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- He, B.; Huang, L.; Wang, Q. Precipitation deficits increase high diurnal temperature range extremes. Sci. Rep. 2015, 5, 12004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waqas, A.; Athar, H.; Shahzad, M.I. Recent variability of the observed diurnal temperature range in the Karakoram and its surrounding mountains of northern Pakistan. In Proceedings of the 2016 AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Beule, L.; Tantanee, S. The Relationship between Diurnal Temperature Range (DTR) and Rainfall over Northern Thailand. Adv. Mater. Res. 2014, 931–932, 614–618. [Google Scholar] [CrossRef]
- Kondo, A.; Kaga, A.; Imamura, K.; Inoue, Y.; Sugisawa, M.; Shrestha, M.L.; Sapkota, B. Investigation of air pollution concentration in Kathmandu valley during winter season. J. Environ. Sci. 2005, 17, 1008–1013. [Google Scholar]
- Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal analysis of diurnal temperature range: Effect of urbanization, cloud cover, solar radiation, and precipitation. Climate 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Climate Change 2001: The Scientific Basis; Working Group I; Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2001.
- Zhou, Z.-Q.; Zhang, R.; Xie, S.-P. Interannual Variability of Summer Surface Air Temperature over Central India: Implications for Monsoon Onset. J. Clim. 2019, 32, 1693–1706. [Google Scholar] [CrossRef]
- Chowdary, J.; John, N.; Gnanaseelan, C. Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol. 2014, 34, 416–429. [Google Scholar] [CrossRef]
- Shrestha, D.; Sharma, S.; Bhandari, S.; Deshar, R. Statistical Downscaling and Projection of Future Temperature and Precipitation Change in Gandaki Basin. J. Inst. Sci. Technol. 2021, 26, 16–27. [Google Scholar] [CrossRef]
- Freychet, N.; Hegerl, G.; Mitchell, D.; Collins, M. Future changes in the frequency of temperature extremes may be underestimated in tropical and subtropical regions. Commun. Earth Environ. 2021, 2, 28. [Google Scholar] [CrossRef]
- Lee, W.-H.; Lim, Y.-H.; Dang, T.N.; Seposo, X.; Honda, Y.; Guo, Y.-L.L.; Jang, H.-M.; Kim, H. An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five east-Asian countries. Sci. Rep. 2017, 7, 39956. [Google Scholar]
Seasons | DTR | Tmax | Tmin |
---|---|---|---|
Pre-Monsoon | −0.09, (p < 0.01) | 0.06, (p < 0.01) | 0.15, (p < 0.01) |
Monsoon | −0.07, (p < 0.01) | 0.06, (p < 0.05) | 0.13, (p < 0.01) |
Post-Monsoon | −0.06, (p < 0.05) | 0.16, (p < 0.01) | 0.22, (p < 0.01) |
Winter | −0.09, (p < 0.01) | 0.11, (p < 0.01) | 0.20, (p < 0.01) |
Annual | −0.08, (p < 0.01) | 0.08, (p < 0.01) | 0.16, (p < 0.01) |
Seasons | Cloud | Precipitation |
---|---|---|
Pre-monsoon | 0.56 (p < 0.01) | 3.90 (p < 0.01) |
Monsoon | 0.20 (p = 0.14) | −4.36 (p < 0.01) |
Post-monsoon | 0.23 (p = 0.24) | −0.79 (p = 0.50) |
Winter | 0.42 (p < 0.05) | −0.42 (p = 0.44) |
Annual | 0.36 (p < 0.05) | −0.48 (p = 0.52) |
Seasons | NINO3.4-DJF | DMI-ON |
---|---|---|
Pre-Monsoon | 0.03, p = 0.78 | −0.42, p < 0.01 |
Monsoon | 0.29, p < 0.05 | 0.08, p = 0.45 |
Post-Monsoon | −0.05, p = 0.65 | −0.41, p < 0.01 |
Winter | −0.14, p = 0.24 | −0.38, p < 0.01 |
Annual | 0.08, p = 0.50 | −0.33, p < 0.01 |
Season | DTR | Tmax | Tmin | ||||||
---|---|---|---|---|---|---|---|---|---|
SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | |
Pre-Monsoon | 0.02 (p < 0.05) | 0 | −0.03 (p < 0.01) | 0.08 (p < 0.01) | 0.24 (p < 0.01) | 0.56 (p < 0.01) | 0.06 (p < 0.01) | 0.24 (p < 0.01) | 0.59 (p < 0.01) |
Monsoon | 0 | −0.08 (p < 0.01) | −0.21 (p < 0.01) | 0.09 (p < 0.01) | 0.24 (p < 0.01) | 0.53 (p < 0.01) | 0.09 (p < 0.01) | 0.32 (p < 0.01) | 0.74 (p < 0.01) |
Post-Monsoon | 0 | −0.05 (p < 0.01) | −0.17 (p < 0.01) | 0.07 (p < 0.01) | 0.19 (p < 0.01) | 0.46 (p < 0.01) | 0.07 (p < 0.01) | 0.24 (p < 0.01) | 0.63 (p < 0.01) |
Winter | 0 | −0.02 (p < 0.05) | −0.11 (p < 0.01) | 0.21 (p < 0.01) | 0.30 (p < 0.01) | 0.46 (p < 0.01) | 0.24 (p < 0.01) | 0.35 (p < 0.01) | 0.54 (p < 0.01) |
Annual | 0.01 (p < 0.05) | −0.04 (p < 0.01) | −0.14 (p < 0.01) | 0.15 (p < 0.01) | 0.21 (p < 0.01) | 0.35 (p < 0.01) | 0.19 (p < 0.01) | 0.29 (p < 0.01) | 0.46 (p < 0.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamal, K.; Sharma, S.; Talchabhadel, R.; Ali, M.; Dhital, Y.P.; Xu, T.; Dawadi, B. Trends in the Diurnal Temperature Range over the Southern Slope of Central Himalaya: Retrospective and Prospective Evaluation. Atmosphere 2021, 12, 1683. https://doi.org/10.3390/atmos12121683
Hamal K, Sharma S, Talchabhadel R, Ali M, Dhital YP, Xu T, Dawadi B. Trends in the Diurnal Temperature Range over the Southern Slope of Central Himalaya: Retrospective and Prospective Evaluation. Atmosphere. 2021; 12(12):1683. https://doi.org/10.3390/atmos12121683
Chicago/Turabian StyleHamal, Kalpana, Shankar Sharma, Rocky Talchabhadel, Munawar Ali, Yam Prasad Dhital, Tianli Xu, and Binod Dawadi. 2021. "Trends in the Diurnal Temperature Range over the Southern Slope of Central Himalaya: Retrospective and Prospective Evaluation" Atmosphere 12, no. 12: 1683. https://doi.org/10.3390/atmos12121683