Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sumatra with Monsoonal-Type Precipitation
- La Niña (LaN): 2005, 2007, 2008, 2010, 2011, 2016, and 2017.
- Normal year: 2001, 2003, 2012, 2013, 2018, and 2020.
- Weak El Niño (WEN): 2004 and 2014.
- Moderate El Niño (MEN): 2002 and 2009.
- Strong El Niño (SEN): 2015.
- Weak El Niño, positive IOD (WENPI): 2006 and 2019.
3.1.1. Dependency between Pair of Two Variables
3.1.2. Conditional Survival Probability
3.1.3. Tail Distribution
3.2. Sumatra with Equatorial-Type Precipitation
3.2.1. Dependency between Pair of Two Variables
3.2.2. Tail Distribution
3.2.3. Madden–Julian Oscillation Impact on the First DRY Season
- Phase 1 (RMM1 < 0, RMM2 < 0, RMM1 > RMM2): enhanced convection (rainfall) develops over the western Indian Ocean.
- Phases 2 (RMM1 < 0, RMM2 < 0, RMM1 < RMM2) and 3 (RMM1 > 0, RMM2 < 0, RMM1 < |RMM2|): enhanced convection (rainfall) moves slowly eastward over Africa, the Indian Ocean, and parts of the Indian subcontinent.
- Phase 4 (RMM1 > 0, RMM2 < 0, RMM1 > |RMM2|) and 5 (RMM1 > 0, RMM2 > 0, RMM1 > RMM2): enhanced convection (rainfall) has reached the maritime continent (Indonesia and the West Pacific).
- Phase 6 (RMM1 > 0, RMM2 > 0, RMM1 < RMM2), 7 (RMM1 < 0, RMM2 > 0, |RMM1| < RMM2) and 8 (RMM1 < 0, RMM2 > 0, |RMM1| > RMM2): enhanced rainfall moves further eastward over the western Pacific, eventually dying out in the central Pacific.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, S.K., Allen, G.-K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S.; et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628. [Google Scholar] [CrossRef]
- Yulianti, N.; Hayasaka, H.; Sepriando, A. Recent Trends of Fire Occurrence in Sumatra (Analysis Using MODIS Hotspot Data): A Comparison with Fire Occurrence in Kalimantan. Open J. For. 2013, 3, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Septiawan, P.; Nurdiati, S.; Sopaheluwakan, A. Analisis Empirical Orthogonal Function (Eof) dan Transformasi Fourier pada Sinyal Curah Hujan Indonesia. In Proceeding of the Seminar Nasional Pendidikan Matematika, Yogyakarta, Indonesia, 11 November 2017. [Google Scholar]
- Septiawan, P.; Nurdiati, S.; Sopaheluwakan, A. Numerical Analysis using Empirical Orthogonal Function Based on Multivariate Singular Value Decomposition on Indonesian Forest Fire Signal. IOP Conf. Ser. Earth Environ. Sci. 2019, 303, 012053. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Agustina, A.; Septiawan, P. Multivariate analysis on Indonesian forest fire using combined em-pirical orthogonal function and covariance matrices. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 12048. [Google Scholar]
- Nur’utami, M.N.; Hidayat, R. Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Inter-action in the Indo-pacific Sector. Procedia Environ. Sci. 2016, 33, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Dafri, M.; Nurdiati, S.; Sopaheluwakan, A. Quantifying ENSO and IOD impact to titik api in Indonesia based on Heterogeneous Correlation Map (HCM). J. Phys. Conf. Ser. 2021, 1896, 012150. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P. Spatial and Temporal Analysis of El Niño Impact on Land and Forest Fire in Kalimantan and Sumatra. Agromet 2021, 35, 1–10. [Google Scholar] [CrossRef]
- Nurdiati, S.; Sopaheluwakan, A.; Julianto, M.T.; Septiawan, P.; Rohimahastuti, F. Modelling and analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: Cases study in South Sumatra and Kalimantan, Indonesia. Model. Earth Syst. Environ. 2021, 1–16. [Google Scholar] [CrossRef]
- McBride, J.L.; Sahany, S.; Hassim, M.E.; Nguyen, C.M.; Lim, S.-Y.; Rahmat, R.; Cheong, W.-K. The 2014 record dry spell at Singapore: An intertropical convergence zone (itcz) drought. Bull. Am. Meteorol. Soc. 2015, 96, S126–S130. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of global-scale circulation cells in the tropics with a 40–50 days period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Pramuwardani, I.; Hartono, S.; Sopaheluwakan, A. The inCuence of Madden–Julian Oscillation on local-scale phenomena over Indonesia during the Western northPaciBc and Australian Monsoon phases. Forum Geogr. 2018, B31, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Fadhlil, R.M.; Sandro, L.; Sonni, S. Impacts of the Madden Julian Oscillation on Precipitation Extremes in Indonesia. Int. J. Clim. 2021, 41, 1970–1984. [Google Scholar]
- Wijayanti, A.V.; Hidayat, R.; Faqih, A.; Alfahmi, F. The Impact of the Interaction between Madden-Julian Oscillation and Cold Surge, on Rainfall over Western Indonesia. Indones. J. Geogr. 2021, 53, 245–253. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. NOAA CDR Program. NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1 [Indicate Subset]; NOAA National Centers for Environmental Information: Silver Spring, MD, USA, 2019. [Google Scholar] [CrossRef]
- An, Y.; Zhao, W.; Li, C.; Liu, Y. Evaluation of Six Satellite and Reanalysis Precipitation Products Using Gauge Observations over the Yellow River Basin, China. Atmosphere 2020, 11, 1223. [Google Scholar] [CrossRef]
- MODIS Collection 61 NRT Hotspot/Active Fire Detections MCD14DL Distributed from NASA FIRMS. Available online: https://earthdata.nasa.gov/firms (accessed on 21 March 2022).
- Francisco de Castro. Fitmethis 2022; MATLAB Central File Ex-Change. Available online: https://www.mathworks.com/matlabcentral/fileexchange/40167-fitmethis (accessed on 15 February 2022).
- Cousineau, D.; Brown, S.; Heathcote, A. Fitting distributions using maximum likelihood: Methods and packages. Behav. Res. Methods Instrum. Comput. 2004, 36, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Random signal processing and spectrum analysis in vehicle noise and vibration refinement. In Vehicle Noise and Vibration Refinement; Woodhead Publishing: Sawston, UK, 2010; pp. 93–116. [Google Scholar] [CrossRef]
- Bali, T.G. The generalized extreme value distribution. Econ. Lett. 2003, 79, 423–427. [Google Scholar] [CrossRef]
- Mscavnicky. Copula Matlab Master. Github Repository. 2019. Available online: https://github.com/mscavnicky/copula-matlab (accessed on 15 February 2022).
- Grothe, O.; Schnieders, J.; Segers, J. Measuring association and dependence between random vectors. J. Multivar. Anal. 2014, 123, 96–110. [Google Scholar] [CrossRef]
- Chadjiconstantinidis, S.; Vrontos, S. On a renewal risk process with dependence under a Farlie–Gumbel–Morgenstern copula. Scand. Actuar. J. 2011, 2014, 125–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Singh, V.P. Symmetric archimedean copulas. In Copulas and Their Applications in Water Resources Engineering; Zhang, L., Singh, V.P., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 123–171. [Google Scholar]
- Aldhufairi, F.A.-A.; Samanthi, R.G.; Sepanski, J.H. New Families of Bivariate Copulas via Unit Lomax Distortion. Risks 2020, 8, 106. [Google Scholar] [CrossRef]
- Hasebe, T. Copula-based maximum-likelihood estimation of sample-selection models. Copula-based maximum-likelihood es-timation of sample-selection models. Stata J. 2013, 13, 547–573. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. Likelihood of a model and information criteria. J. Econ. 1981, 16, 3–14. [Google Scholar] [CrossRef]
- Charpentier, A. Tail distribution and dependence measures. In Proceedings of the 34th ASTIN Conference, Berlin, Germany, 24 August 2003; pp. 1–25. [Google Scholar]
- Juri, A.; Wüthrich, M.V. Copula convergence theorems for tail events. Insur. Math. Econ. 2002, 30, 405–420. [Google Scholar] [CrossRef]
- Oakes, D. On the preservation of copula structure under truncation. Can. J. Stat. Rev. Can. Stat. 2005, 33, 465–468. [Google Scholar] [CrossRef]
- Davidow, M.; Matteson, D.S. Copula Quadrant Similarity for Anomaly Scores. arXiv 2021, arXiv:2101.02330v1. [Google Scholar]
- Ardiansyah, M.; Boer, R.; Situmorang, A. Typology of land and forest fire on South Sumatra, Indonesia Based on Assessment of MODIS Data. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012058. [Google Scholar] [CrossRef]
- Yulihastin, E.; Febrianti, N. Trismidianto. In Impacts of El Niño and IOD on the Indonesian Climate; National Institute of Aeronautics and Space (LAPAN): Jakarta, Indonesia, 2009. [Google Scholar]
- Avia, L.; Sofiati, I. Analysis of El Niño and IOD Phenomenon 2015/2016 and Their Impact on Rainfall Variability in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 166, 012034. [Google Scholar] [CrossRef] [Green Version]
- Kurniadi, A.; Weller, E.; Min, S.; Seong, M. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int. J. Clim. 2021, 41, 3640–3656. [Google Scholar] [CrossRef]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- Hidayat, R. Modulation of Indonesian Rainfall Variability by the Madden-julian Oscillation. Procedia Environ. Sci. 2016, 33, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Peatman, S.C.; Matthews, A.J.; Stevens, D.P. Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q. J. R. Meteorol. Soc. 2013, 140, 814–825. [Google Scholar] [CrossRef]
- Zhu, B.; Du, Y.; Gao, Z. Influences of MJO on the Diurnal Variation and Associated Offshore Propagation of Rainfall near Western Coast of Sumatra. Atmosphere 2022, 13, 330. [Google Scholar] [CrossRef]
- Haki, M. Precipitation over Indonesia in Observations and Global Reforecasts and Impact of the Madden Julian Oscillation. Master’s Thesis, North Carolina State University, Raleigh, NC, USA.
- Rauniyar, S.P.; Walsh, K. Scale Interaction of the Diurnal Cycle of Rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Clim. 2011, 24, 325–348. [Google Scholar] [CrossRef]
- Fujita, M.; Yoneyama, K.; Mori, S.; Nasuno, T.; Satoh, M. Diurnal Convection Peaks over the Eastern Indian Ocean off Sumatra during Different MJO Phases. J. Meteorol. Soc. Jpn. Ser. 2011, 89A, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Kamimera, H.; Mori, S.; Yamanaka, M.D.; Syamsudin, F. Modulation of Diurnal Rainfall Cycle by the Madden-Julian Oscillation Based on One-Year Continuous Observations with a Meteorological Radar in West Sumatera. SOLA 2012, 8, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Chin, M.; Ichoku, C.M.; Field, R.D. Connecting Indonesian Fires and Drought with the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016. J. Geophys. Res. Atmos. 2018, 123, 7974–7988. [Google Scholar] [CrossRef]
- Field, R.D.; van der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O.; et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Van Rensch, P.; Cowan, T.; Hendon, H.H. Teleconnection Pathways of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall. J. Clim. 2011, 24, 3910–3923. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, X.; Xu, P.; Zhao, X.; Masumoto, Y.; Han, W. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: Dynamics and long-term trends under global warming. J. Oceanol. Limnol. 2017, 36, 4–19. [Google Scholar] [CrossRef]
- Okta, D.L.; Sutriyono, E.; Iskandar, I. Respective Influences of Indian Ocean Dipole and El Niño-Southern Oscillation on Indonesian Precipitation. J. Math. Fund. Sci. 2018, 50, 257–272. [Google Scholar]
- Le, T.; Ha, K.-J.; Bae, D.-H.; Kim, S.-H. Causal effects of Indian Ocean Dipole on El Niño–Southern Oscillation during 1950–2014 based on high-resolution models and reanalysis data. Environ. Res. Lett. 2020, 15, 1040b6. [Google Scholar] [CrossRef]
- Hong, C.-C.; Lu, M.-M.; Kanamitsu, M. Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res. Earth Surf. 2008, 113, D08107. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Dong, Q.; Si, F.; Xie, J.; Cunjin, X.; Qing, D.; Fengtai, S.; Jiong, X. Spatio-temporal structure of SST in El Niño regions and its relationships with zonal displacement anomaly of western Pacific warm pool. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2025–2028. [Google Scholar] [CrossRef]
Copula | Parameter Range | |
---|---|---|
Gaussian (Normal) | ||
Clayton | ||
Frank | ||
Gumbel | ||
Student’s t |
Variable Pair | Normal | WEN | MEN | SEN | WENPI | |
---|---|---|---|---|---|---|
Dry spell–Prec. anomaly | −0.409 | −0.394 | −0.468 | −0.221 | −0.709 | −0.714 |
Dry spell–Hotspot | 0.218 | 0.139 | 0.168 | 0.173 | 0.179 | 0.183 |
Prec. anomaly–Hotspot | −0.144 | −0.137 | −0.082 | −0.068 | −0.067 | −0.109 |
Variable | Normal | WEN | MEN | SEN | WENPI | |
---|---|---|---|---|---|---|
Dry spell–Prec. anomaly | −0.217 | −0.263 | −0.061 | −0.119 | −0.345 | −0.363 |
Dry spell–Hotspot | 0.055 | 0.002 | −0.017 | 0.022 | −0.102 | 0.077 |
Prec. anomaly–Hotspot | −0.035 | −0.06 | 0.113 | −0.071 | −0.064 | 0 |
Variable | Phase 1–4 | Phase 5 | Phase 6 | Phase 7 | Phase 8 |
---|---|---|---|---|---|
Dry spell–Prec. anomaly | −0.629 | −0.6437 | −0.650 | −0.700 | −0.578 |
Dry spell–Hotspot | 0.120 | 0.109 | 0.1387 | 0.147 | 0.166 |
Prec. anomaly–Hotspot | −0.067 | −0.062 | −0.086 | −0.074 | −0.104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P. Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia). Atmosphere 2022, 13, 537. https://doi.org/10.3390/atmos13040537
Nurdiati S, Sopaheluwakan A, Septiawan P. Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia). Atmosphere. 2022; 13(4):537. https://doi.org/10.3390/atmos13040537
Chicago/Turabian StyleNurdiati, Sri, Ardhasena Sopaheluwakan, and Pandu Septiawan. 2022. "Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia)" Atmosphere 13, no. 4: 537. https://doi.org/10.3390/atmos13040537
APA StyleNurdiati, S., Sopaheluwakan, A., & Septiawan, P. (2022). Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia). Atmosphere, 13(4), 537. https://doi.org/10.3390/atmos13040537