Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. COVID-19 in Poland
2.3. Data and Methods
2.3.1. Traffic
2.3.2. Meteorological Data
2.3.3. Pollution
2.3.4. Statistical Methods
3. Results and Discussions
3.1. Comparing the Air Quality between Roadside and Background Stations before COVID-19 Pandemic
3.2. Comparing the Air Quality between Roadside and Non-Roadside Stations in First COVID-19 Pandemic Wave
3.3. Air Quality during COVID-19 Pandemic First Wave against the Background of the Period 2016–2019
3.4. Air Pollution after COVID-19 Pandemic First Wave (2021)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Soga, M.; Evans, M.J.; Cox, D.T.C.; Gaston, K.J. Impacts of the COVID-19 pandemic on human–nature interactions: Pathways, evidence and implications. People Nat. 2021, 3, 518–527. [Google Scholar] [CrossRef]
- McNeely, J.A. Nature and COVID-19: The pandemic, the environment, and the way ahead. Ambio 2021, 50, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Budiman, I.; Kusumaratna, R.K. Human-nature interactions through the lens of global pandemics: A review. Ekol. Cheloveka (Hum. Ecol.) 2021, 4, 15–24. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H. Generalized additive modelling of air pollution, traffic volume and meteorology. Atm. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Bertaccini, P.; Dukic, V.; Ignaccolo, R. Modeling the Short-Term Effect of Traffic and Meteorology on Air Pollution in Turin with Generalized Additive Models. Adv. Meteorol. 2012, 2012, 609328. [Google Scholar] [CrossRef]
- Catalano, M.; Galatioto, F.; Bell, M.; Namdeo, A.; Bergantino, A.S. Improving the prediction of air pollution peak episodes generated by urban transport networks. Environ. Sci. Policy 2016, 60, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, J.A. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław. J. Environ. Manag. 2018, 217C, 164–174. [Google Scholar] [CrossRef]
- Laña, I.; Del Ser, J.; Pedró, A.; Vélez, M.; Casanova-Mateo, C. The role of local urban traffic and meteorological conditions in air pollution: A data-based study in Madrid, Spain. Atmos Environ. 2016, 145, 424–438. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.A.; Ropkins, K. Understanding how roadside concentrations of NOx are influenced by the background levels, traffic density, and meteorological conditions using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- Kamińska, J.A.; Turek, T. Explicit and implicit description of the factors impact on the NO2 concentration in the traffic corridor. Archiv. Environ. Prot. 2020, 46, 93–99. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755 Pt 1, 142533. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C.; Chen, Z.; Hao, X.; et al. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2021, 279, 123622. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in Northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Dai, Q.; Li, Y.; Han, S.; Zhang, Y.; Feng, Y. Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. J. Environ. Sci. 2021, 109, 45–56. [Google Scholar] [CrossRef]
- Rudke, A.P.; Martins, J.A.; de Almeida, D.S.; Martins, L.D.; Beal, A.; Hallak, R.; Freitas, E.D.; Andrade, M.F.; Foroutan, H.; de Baek, B.H.A.; et al. How mobility restrictions policy and atmospheric conditions impacted air quality in the State of São Paulo during the COVID-19 outbreak. Environ. Res. 2021, 198, 111255. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Barnes, J.; Hayes, E. Traffic-related air pollution reduction at UK schools during the COVID-19 lockdown. Sci. Total Environ. 2021, 780, 146651. [Google Scholar] [CrossRef]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Cai, C. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahman, M.; Tusher, T.R.; Roy, S.; Razi, M.A. Assessing the Relationship between COVID-19, Air Quality, and Meteorological Variables: A Case Study of Dhaka City in Bangladesh. Aerosol Air Qual. Res. 2021, 21, 200609. [Google Scholar] [CrossRef]
- Khan, Y.A. The COVID-19 pandemic and its impact on environment: The case of the major cities in Pakistan. Environ. Sci. Pollut. Res. Int. 2021, 28, 54728–54743. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Cai, W.; He, H.; Ni, A.; Peng, Z. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Al-Abadleh, H.A.; Lysy, M.; Neil, L.; Patel, P.; Mohammed, W.; Khalaf, Y. Rigorous quantification of statistical significance of the COVID-19 lockdown effect on air quality: The case from ground-based measurements in Ontario, Canada. J. Hazard. Mater. 2021, 413, 125445. [Google Scholar] [CrossRef]
- Gamma, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic contribution. Environ. Res. 2021, 193, 110515. [Google Scholar] [CrossRef]
- Mishra, G.; Ghosh, K.; Dwivedi, A.K.; Kumar, M.; Kumar, S.; Chintalapati, S.; Tripathi, S.N. An application of probability density function for the analysis of PM2.5 concentration during the COVID-19 lockdown period. Sci. Total Environ. 2021, 782, 146681. [Google Scholar] [CrossRef]
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted air quality parameters: A review. Environ. Prog. Sust. Energy 2021, 40, e13672. [Google Scholar] [CrossRef]
- [Age Structure of the Vehicle Park in Poland]. Available online: https://www.auto-swiat.pl/wiadomosci/aktualnosci/sredni-wiek-samochodow-w-europie-polska-jak-zwykle-na-szarym-koncu/b5e8msq (accessed on 12 August 2021).
- Rogulski, M.; Badyda, A. Air Pollution Observations in Selected Locations in Poland during the Lockdown Related to COVID-19. Atmosphere 2021, 12, 806. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 Pandemic on Air Pollution in Poland Based on Surface Measurements and Satellite Data. Aerosol Air Qual. Res. 2021, 21, 200472. [Google Scholar] [CrossRef]
- Sangkham, S.; Thongtip, S.; Vongruang, P. Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak. Environ. Res. 2021, 197, 111104. [Google Scholar] [CrossRef] [PubMed]
- Amnuaylojaroen, T.; Parasin, N. The Association between COVID-19, Air Pollution, and Climate Change. Front. Public Health 2021, 9, 662499. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, T.; Guo, Y.; Wang, J.; Wei, J.; Yu, Q. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chem. Eng. J. 2021, 420, 127588. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Alimissis, A.; Philippopoulos, K.; Deligiorgi, D. Applying linear and nonlinear models for the estimation of particulate matter variability. Environ. Pollut. 2019, 246, 89–98. [Google Scholar] [CrossRef]
- Cabaneros, S.M.L.S.; Calautit, J.K.S.; Hughes, B.R. Hybrid Artificial Neural Network Models for Effective Prediction and Mitigation of Urban Roadside NO2. Energy Procedia 2017, 142, 3524–3530. [Google Scholar] [CrossRef]
- Książek, S.; Suszczewicz, M. City profile: Wrocław. Cities 2017, 65, 51–65. [Google Scholar] [CrossRef]
- [Comprehensive Traffic Survey]. Available online: https://www.wroclaw.pl/srodowisko/wyniki-kompleksowego-badania-ruchu-we-wroclawiu-i-aglomeracji-2018 (accessed on 12 August 2021).
- Chalfen, M.; Kamińska, J.A. Identification of parameters and verification of an urban traffic flow model. A case study in Wrocław. XLVIII Seminar of Applied Mathematics. ITM Web Conf. 2018, 23, 00005. [Google Scholar] [CrossRef]
- Information on Air Quality in Wrocław 2016. Provincial Environment Protection Inspectorate, Wrocław. Available online: https://www.wroclaw.pios.gov.pl/pliki/powietrze/powietrze_wroclaw_2015_wios.pdf (accessed on 10 September 2021).
- [Statistics Poland]. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (accessed on 12 August 2021).
- Kazak, J.K.; Szewranski, S.; Pilawka, T.; Tokarczyk-Dorociak, K.; Janiak, K.; Swiader, M. Changes in water demand patterns in a European city due to restrictions caused by the COVID-19 pandemic. Desalination Water Treat. 2021, 222, 1–15. [Google Scholar] [CrossRef]
- Kamińska, J.A. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci. Total Environ. 2019, 651, 475–483. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Wetchayont, P. Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand. Adv. Meteorol. 2021, 6697707. [Google Scholar] [CrossRef]
- Kimbrough, S.; Owen, R.C.; Snyder, M.; Richmond-Bryant, J. NO to NO2 Conversion Rate Analysis and Implications for Dispersion Model Chemistry Methods using Las Vegas, Nevada Near-Road Field Measurements. Atmos. Environ. 2017, 165, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Sillman, S.; He, D. Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. J. Geophys. Res. 2002, 107, 4659. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.A.K. Steady states and transport processes in urban ozone balances. Clim. Atmos. Sci. 2018, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Han, S.Q.; Bian, H.; Feng, Y.C.; Liu, A.X.; Li., X.J.; Zeng, F.; Zhang, X.L. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Trebs, I.; Bohn, B.; Ammann, C.; Rummel, U.; Blumthaler, M.; Königstedt, R.; Meixner, F.X.; Fan, S.; Andreae, M.O. Relationship between the NO2 photolysis frequency and the solar global irradiance. Atmos. Meas. Tech. 2009, 2, 725–739. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Kazak, J.; Chalfen, M.; Kamińska, J.; Szewrański, S.; Świąder, M. Geo-Dynamic Decision Support System for Urban Traffic Management. In Dynamics in GIscience. GIS Ostrava 2017; Ivan, I., Horak, J., Inspektor, T., Eds.; Lecture Notes in Geoinformation and Cartpgraphy; Springer: Cham, Switzerland, 2018; pp. 195–207. ISBN 978-3-319-61296-6. [Google Scholar] [CrossRef]
- Leśniewski, M.; Świąder, M.; Kaczmarek, I.; Castro, D.G.; Kamińska, J.A.; Pilawka, T.; Kazak, J.K. Towards Transit–Oriented Development for Sustainable Urban Mobility: Insights from a Central European City. Geomat. Environ. Eng. 2021, 15, 39–53. [Google Scholar] [CrossRef]
Variable | Min | Median | Average | Max | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
R | A | R | A | R | A | R | A | ||
Traffic flow (veh) | 0 | 56 | 3219 | 1947 | 2786 (1810) | 2053 (1463) | 5809 | 4849 | 0.000000 |
Variable | Min | Median | Average | Max | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
R | A | R | A | R | A | R | A | ||
Air temperature (°C) | −7.9 | −6.2 | 11.1 | 10.2 | 11.1 (3.39) | 9.8 (5.99) | 31.0 | 24.1 | 0.000000 |
Wind speed (m/s) | 0 | 0 | 3.0 | 3.0 | 3.21 (1.99) | 2.92 (1.69) | 12 | 10 | 0.000000 |
Wind direction (deg) | 0 | 0 | 220 | 246 | 193 (107) | 199 (115) | 360 | 360 | 0.049400 |
Relative humidity (%) | 22 | 17 | 70 | 57 | 68.0 (20.30) | 58.0 (18.36) | 99 | 97 | 0.000000 |
Water vapor pressure (hPa) | 1.9 | 2.0 | 9 | 6.8 | 9.24 (3.23) | 7.17 (2.85) | 22 | 16.8 | 0.000000 |
Air pressure (hPa) | 983.9 | 987.8 | 1000.5 | 1006.7 | 1001.1 (7.44) | 1005.7 (8.11) | 1020.3 | 1024.4 | 0.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turek, T.; Diakowska, E.; Kamińska, J.A. Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland. Atmosphere 2021, 12, 1549. https://doi.org/10.3390/atmos12121549
Turek T, Diakowska E, Kamińska JA. Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland. Atmosphere. 2021; 12(12):1549. https://doi.org/10.3390/atmos12121549
Chicago/Turabian StyleTurek, Tomasz, Ewa Diakowska, and Joanna A. Kamińska. 2021. "Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland" Atmosphere 12, no. 12: 1549. https://doi.org/10.3390/atmos12121549
APA StyleTurek, T., Diakowska, E., & Kamińska, J. A. (2021). Has COVID-19 Lockdown Affected on Air Quality?—Different Time Scale Case Study in Wrocław, Poland. Atmosphere, 12(12), 1549. https://doi.org/10.3390/atmos12121549