Urban Effect on Sea-Breeze-Initiated Rainfall: A Case Study for Seoul Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Data
2.3. Factor Separation
3. Control Simulation and Observations
3.1. Observational Features of Study Case
3.2. Comparison of Simulation with Observation
4. Sensitivity Experiments
4.1. Horizontal Distribution of Accumulated Rainfall
4.2. Sea and Urban Breeze
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pielke, R.A. A three-dimensional numerical model of the sea breezes over south Florida. Mon. Weather Rev. 1974, 102, 115–139. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.D.; Lynn, B.H.; Boone, A.; Tao, W.-K.; Simpson, J. The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeorol. 2001, 2, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.T.K.; Keim, B.D.; Talbot, R.W.; Mao, H. Seabreeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41, 1011. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Rotunno, R.; Chen, J.; Deng, X.; Xue, H. A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts. Atmos. Chem. Phys. 2021, 21, 9289–9308. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Carter, M.; Manyin, M.; Messen, D.; Burian, S. The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environ. Plan. B Urban Anal. City Sci. 2010, 37, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Dauhut, T.; Chaboureau, J.-P.; Escobar, J.; Mascart, P. Giga-LES of Hector the Convector and its two tallest updrafts up to the stratosphere. J. Atmos. Sci. 2016, 73, 5041–5060. [Google Scholar] [CrossRef]
- Jauregui, E.; Romales, E. Urban effects on convective precipitation in Mexico City. Atmos. Environ. 1996, 30, 3383–3389. [Google Scholar] [CrossRef]
- Shem, W.; Shepherd, M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res. 2009, 92, 172–189. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J. A theoretical and numerical study of urban heat island-induced circulation and convection. J. Atmos. Sci. 2008, 65, 1859–1877. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Climatol. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Park, M.S.; Chae, J.H. Features of sea-land-breeze circulation over the Seoul Metropolitan area. Geosci. Lett. 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.H.; Baik, J.J. Daytime local circulations and their interactions in the Seoul Metropolitan area. J. Appl. Meteorol. Climatol. 2013, 52, 784–800. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. Tech. Note NCAR/TN-475+STR, NCAR. 2008, p. 174. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 5 November 2021).
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.H.; Hong, S.-Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Jacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated k-model for the long-wave. J. Geophys. Res. 1997, 102, 16663–166682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R. Implementation and verification of the unified NOAH land surface model in the WRF model. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Seattle, WA, USA, 2004; Volume 1115, pp. 2165–2170. [Google Scholar]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Griffiths, R.F.; Hall, D.J. An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ. 1998, 32, 1857–1864. [Google Scholar] [CrossRef]
- Kwon, T.H.; Park, M.-S.; Yi, C.; Choi, Y.J. Effects of different averaging operators on the urban turbulent fluxes. Atmos. KMS 2014, 24, 197–206. [Google Scholar] [CrossRef]
- Lee, S.-H.; Song, C.-K.; Baik, J.-J.; Park, S.-U. Estimation of anthropogenic heat emission in the Gyeong—In region of Korea. Theor. Appl. Clim. 2009, 96, 291–303. [Google Scholar] [CrossRef]
- Park, M.S.; Park, S.H.; Chae, J.H.; Choi, M.H.; Song, Y.; Kang, M.; Roh, J.W. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan area, South Korea. Atmos. Meas. Tech. 2017, 10, 1575–1594. [Google Scholar] [CrossRef]
- Park, J.-Y.; Suh, M.-S. Improvement of MODIS land cover classification over the Asia-Oceania region. Korean J. Remote Sens. 2015, 31, 51–64. [Google Scholar] [CrossRef] [Green Version]
- NIMR Construction of Input Data for WRF-UCM Using GIS and Its Operating Method, NIMR-TN2014-016, NIMR. 2014; p. 47.
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Stein, U.; Alpert, P. Factor separation in numerical simulations. J. Atmos. Sci. 1993, 50, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Reddy, T.V.R.; Mehta, S.K.; Ananthavel, A.; Ali, S.; Annamalai, V.; Rao, D.N. Seasonal characteristics of sea breeze and thermal internal boundary layer over Indian coast region. Meteorol. Atmos. Phys. 2021, 133, 217–232. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science an Introductory Survey, 2nd ed.; Academic Press: San Diego, CA, USA, 2006; pp. 344–366. [Google Scholar]
- Fovell, R.G. Convective initiation ahead of the sea-breeze front. Mon. Weather Rev. 2005, 133, 264–278. [Google Scholar] [CrossRef]
- Laird, N.F.; Kristovich, D.A.R.; Rauber, R.M.; Ochs, H.T.; Miller, L.J. The Cape Canaveral Sea and River Breezes: Kinematic structure and convective initiation. Mon. Weather Rev. 1995, 123, 2942–2956. [Google Scholar] [CrossRef] [Green Version]
- Freitag, B.M.; Nair, U.S.; Noyogi, D. Urban modification of convection and rainfall in complex terrain. J. Geophys. Res. 2018, 45, 2507–2515. [Google Scholar] [CrossRef]
- Kitada, T.; Okamura, K.; Tanaka, S. Effects of topography and urbanization on local winds and thermal environment in the Nohbi Plain, coastal region of central Japan: A numerical analysis by mesoscale meteorological model with a k-turbulence model. J. Appl. Meteorol. 1998, 37, 1026–1046. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Smith, J.A.; Bou-zeid, E.; Baeck, M.L. The influence of land surface heterogeneities on heavy convective rainfall in the Baltimore-Washington Metropolitan area. Mon. Weather Rev. 2016, 144, 553–573. [Google Scholar] [CrossRef]
- Freitas, E.D.C.; Rozoff, C.M.; Cotton, W.R.; Silva Dias, P.L. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil. Bound.-Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Baik, J.J.; Kim, Y.-H.; Kim, H.-J.; Han, J.-Y. Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Clim. 2007, 89, 73–81. [Google Scholar] [CrossRef]
Simulation | Description |
---|---|
CNTL | Control |
NOSEA | Cropland replaces sea |
NOURBAN | Cropland replaces urban area |
NOSEANOURB | Cropland replaces sea and urban area |
NA | No anthropogenic heat or anthropogenic latent heat |
LB | Lowered building height |
NALB | No anthropogenic heat, anthropogenic latent heat or lowered building height |
Simulation | Land Use | Building Height (m) | Standard Deviation of Roof Height (m) | Anthropogenic Heat (W m−2) | Anthropogenic Latent Heat (W m−2) |
---|---|---|---|---|---|
CNTL | Urban 1 | 5 | 1 | 20 | 20 |
Urban 2 | 7.5 | 3 | 50 | 25 | |
Urban 3 | 10 | 4 | 90 | 40 | |
NA | Urban 1 | 5 | 1 | 0 | 0 |
Urban 2 | 7.5 | 3 | 0 | 0 | |
Urban 3 | 10 | 4 | 0 | 0 | |
LB | Urban 1 | 1 | 0.2 | 20 | 20 |
Urban 2 | 1 | 0.2 | 50 | 25 | |
Urban 3 | 1 | 0.2 | 90 | 40 | |
NALB | Urban 1 | 1 | 0.2 | 0 | 0 |
Urban 2 | 1 | 0.2 | 0 | 0 | |
Urban 3 | 1 | 0.2 | 0 | 0 |
Factor | Calculation | Description |
---|---|---|
NOSEANOURB | Unrelated to either urban or sea breeze | |
NOSEA − NOSEANOURB | Effect of urban | |
NOURBAN − NOSEANOURB | Effect of sea breeze | |
CNTL − (NOSEA + NOUR BAN) + NOSEANOURB | Interaction between urban and sea breeze | |
NALB | Unrelated to either roughness or anthropogenic heat | |
NA − NALB | Effect of roughness | |
LB − NALB | Effect of anthropogenic heat | |
CNTL − (NA + LB) + NALB | Interaction between roughness and anthropogenic heat |
Region | Obs (mm) | Mod (mm) | Location Error (km) |
---|---|---|---|
Northeast | 56.5 | 43.6 | 5 |
Northwest | 47.0 | 23.9 | 7 |
South-center | 29.5 | 11.5 | 4 |
Simulation | Time of Maximum Rainfall (LST) | Maximum 3-h Accumulated Rainfall (mm) | Longitude (Degree E) | Latitude (Degree N) |
---|---|---|---|---|
CNTL | 1700–1800 | 43.6 | 127.10 | 37.62 |
LB | 1700–1800 | 54.4 | 127.09 | 37.56 |
NA | 1700–1800 | 41.3 | 127.09 | 37.58 |
NALB | 1600–1700 | 36.0 | 127.04 | 37.55 |
NOURBAN | 1600–1700 | 20.7 | 127.01 | 37.55 |
Simulation | CNTL | LB | NA | NALB | NOURBAN |
---|---|---|---|---|---|
Mean low-level wind speed at the western boundary at 1600 LST (m s−1) | 4.3 | 4.3 | 3.9 | 4.3 | 3.5 |
Low-level convergence at the SBF at 1600 LST (10−4 s−1) | 3.5 | 6.4 | 4.3 | 5.1 | 7.1 |
Low-level mixing ratio at the SBF at 1600 LST (g kg−1) | 15.3 | 15.2 | 15.3 | 15.5 | 16.2 |
Mean low-level wind speed at the western boundary at 1700 LST (m s−1) | 4.0 | 4.0 | 3.7 | 3.9 | 3.4 |
Low-level convergence at the SBF at 1700 LST (10−4 s−1) | 7.76 | 13.8 | 13.2 | 4.8 | 9.5 |
Low-level mixing ratio at the SBF at 1700 LST (g kg−1) | 16.5 | 16.7 | 16.5 | 16.3 | 16.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Lee, Y.-H. Urban Effect on Sea-Breeze-Initiated Rainfall: A Case Study for Seoul Metropolitan Area. Atmosphere 2021, 12, 1483. https://doi.org/10.3390/atmos12111483
Choi Y, Lee Y-H. Urban Effect on Sea-Breeze-Initiated Rainfall: A Case Study for Seoul Metropolitan Area. Atmosphere. 2021; 12(11):1483. https://doi.org/10.3390/atmos12111483
Chicago/Turabian StyleChoi, Yuna, and Young-Hee Lee. 2021. "Urban Effect on Sea-Breeze-Initiated Rainfall: A Case Study for Seoul Metropolitan Area" Atmosphere 12, no. 11: 1483. https://doi.org/10.3390/atmos12111483
APA StyleChoi, Y., & Lee, Y. -H. (2021). Urban Effect on Sea-Breeze-Initiated Rainfall: A Case Study for Seoul Metropolitan Area. Atmosphere, 12(11), 1483. https://doi.org/10.3390/atmos12111483