Specification of Modified Jarvis Model Parameterization for Pinus cembra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Characteristic
2.2. Field Measurements of Stomatal Conductance
2.3. Modified Jarvis Model of Stomatal Conductance
Parameterization of Modified Jarvis Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Equations for Reducing Factors
References
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Tarasick, D.; Galbally, I.E.; Cooper, O.R.; Schultz, M.G.; Ancellet, G.; Leblanc, T.; Wallington, T.J.; Ziemke, J.; Liu, X.; Steinbacher, M.; et al. Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC 2014 Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar] [CrossRef] [Green Version]
- Mills, G.; Pleijel, H.; Malley, C.S.; Sinha, B.; Cooper, O.R.; Schultz, M.G.; Neufeld, H.S.; Simpson, D.; Sharps, K.; Feng, Z.; et al. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Belz, R.B.; Calatayud, V.; De Marco, A.; Hoshika, Y.; Kitao, M.; Saitanis, C.J.; Sicard, P.; Paoletti, E.; Calabrese, E.J. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Sci. Total Environ. 2019, 649, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Kurpius, M.R.; Goldstein, A.H. Gas-phase chemistry dominates O-3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 2003, 30, 1371–1374. [Google Scholar] [CrossRef]
- Hogg, A.; Uddling, J.; Ellsworth, D.; Carroll, M.A.; Pressley, S.; Lamb, B.; Vogel, C. Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus B Chem. Phys. Meteorol. 2007, 58, 514–525. [Google Scholar]
- Regener, V.H. The vertical flux of atmospheric ozone. J. Geophys. Res. 1957, 62, 221–228. [Google Scholar] [CrossRef]
- Lamaud, E.; Carrara, A.; Bruneta, Y.; Lopez, A.; Druilhet, A. Ozone fluxes above and within a pine forest canopy in dryand wet conditions. Atmos. Environ. 2002, 36, 77–88. [Google Scholar] [CrossRef]
- Mikkelsen, T.N.; Ro-Poulsen, H.; Hovm, M.F.; Jensen, N.O.; Pilegaard, K.; Egeløv, A.H. Five-year measurements of ozone fluxes to a Danish Norway spruce canopy. Atmos. Environ. 2004, 38, 2361–2371. [Google Scholar] [CrossRef]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B 1976, 273, 593–610. [Google Scholar]
- Zhang, L.; Moran, M.; Makar, P.; Brook, J.R.; Gong, S. Modelling gaseous dry deposition in AURAMS—A Unified Regional Air-quality Modelling System. Atmos. Environ. 2002, 36, 537–560. [Google Scholar] [CrossRef]
- Cieslik, S.; Tuovinen, J.P.; Baumgarten, M.; Matyssek, R.; Brito, P.; Wieser, G. Gaseous exchange between forests and the atmosphere. Dev. Environ. Sci. 2013, 13, 19–36. [Google Scholar]
- Conte, A.; Otu-Larbi, F.; Alivernini, A.; Hoshika, Y.; Paoletti, E.; Ashworth, K.; Fares, S. Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study. Environ. Pollut. 2021, 287, 117620. [Google Scholar] [CrossRef] [PubMed]
- Massman, W.J. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ. 1998, 32, 1111–1127. [Google Scholar] [CrossRef]
- Mills, G.; Harmens, H.; Hayes, F.; Pleijel, H.; Büker, P.; González, I.; Alonso, R.; Bender, J.; Bergmann, E.; Bermejo, V.; et al. Mapping Critical Levels for Vegetation Revised Chapter 3 of the Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. Available online: https://www.researchgate.net/publication/329101282 (accessed on 16 September 2019).
- Emberson, L.D.; Wieser, G.; Ashmore, M.R. Modelling of stomatal conductance and ozone flux of Norway spruce: Comparison with field data. Environ. Pollut. 2000, 109, 393–402. [Google Scholar] [CrossRef]
- Tuovinen, J.-P.; Simpson, D.; Fagerli, H.; Jonson, J.E.; Tsyro, S.; Wind, P. Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, PART 1, Unified EMEP Model Description; Norwegian Meteorological Institute: Oslo, Norway, 2003.
- Tuovinen, J.-P.; Ashmore, M.R.; Emberson, L.D.; Simpson, D. Testing and improving the EMEP ozone deposition module. Atmos. Environ. 2004, 38, 2373–2385. [Google Scholar] [CrossRef]
- Kaiser, H.; Paoletti, E. Trees in a Changing Environment. Chapter: Dynamic Stomatal Changes, 1st ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 61–82. [Google Scholar]
- Kaiser, H. Relat. Stomatal Aperture Gas Exch. Consid. Pore Geom. Diffus. Resist. Mesophyll. Plant, Cell Environ. 2009, 32, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Kuchitsu, K. Early ABA Signal. Events Guard Cells. J. Plant Growth Regul. 2005, 24, 296–307. [Google Scholar] [CrossRef]
- Mills, G.; Hayes, F.; Simpson, D.; Emberson, L.; Norris, D.; Harmens, H.; Büker, P. Evid. Widespread Eff. Ozone Crop. (semi-)natural Veg. Eur. (1990–2006) Relat. AOT40- Flux-Based Risk Maps. Global Chang. Biol. 2011, 17, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Novak, K.; Skelly, J.M.; Schaub, M.; Kräuchi, N.; Hug, C.; Landolt, W.; Bleuler, P. Ozone Air Pollut. Foliar Inj. Dev. Nativ. Plants Switzerland. Environ. Pollut. 2003, 125, 41–52. [Google Scholar] [CrossRef]
- Orendovici, T.; Skelly, J.M.; Ferdinand, J.A.; Savage, J.E.; Sanz, M.J.; Smith, G.C. Response Nativ. Plants Northeast. United States South. Spain Ozone Expo. Determ. Expo. Relationships. Environ. Pollut. 2003, 1, 31–40. [Google Scholar] [CrossRef]
- Bussotti, F.; Desotgiu, R.; Cascio, C.; Pollastrini, M.; Gravano, E.; Gerosa, G.; Marzuoli, R.; Nali, C.; Lorenzini, G.; Salvatori, E.; et al. Ozone Stress Woody Plants Assess. Chlorophyll A Fluorescence. A Crit. Reassess. Exist. Datall. Environ. Exp. Bot. 2011, 73, 19–308. [Google Scholar] [CrossRef]
- Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Glob. Chang. Biol. 2009, 15, 396–424. [Google Scholar] [CrossRef]
- Proietti, C.; Anav, A.; De Marco, A.; Sicard, P.; Vitale, M. Early ABA Signal. Events Guard Cells. Sci. Total Environ. 2016, 556, 1–11. [Google Scholar] [CrossRef]
- Matyssek, R.; Karnosky, D.F.; Wieser, G.; Percy, K.; Oksanen, E.; Grams, T.E.E.; Kubiske, M.; Hanke, D.; Pretzsch, H. Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies. Environ. Pollut. 2010, 158, 1990–2006. [Google Scholar] [CrossRef]
- Massman, W.J.; Musselman, R.C.; Lefohn, A.S. A conceptual ozone dose-response model to develop a standard to protect vegetation. Atmos. Environ. 2000, 34, 745–759. [Google Scholar] [CrossRef]
- Wieser, G.; Häsler, R.; Götz, B.; Koch, W.; Havranek, W.M. Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: A synthesis. Environ. Pollut. 2000, 109, 415–422. [Google Scholar] [CrossRef]
- Chappelka, A.H.; Samuelson, L.J. Ambient ozone effects on forest trees of the eastern United States: A review. New Phytol. 1998, 139, 91–108. [Google Scholar] [CrossRef]
- Bičárová, S.; Shashikumar, A.; Dalstein-Richier, L.; Lukasová, V.; Adamčíková, K.; Pavlendová, H.; Sitková, Z.; Buchholcerová, A.; Bilčík, D. The response of Pinus species to ozone uptake in different climate regions of Europe. Cent. Eur. For. J. 2020, 66, 255–268. [Google Scholar]
- Dalstein, N.; Vas, N. Ozone concentrations and ozone-induced symptoms on coastal and alpine mediterrnean pines in southern France. Water Air Soil Pollut. 2005, 160, 181–195. [Google Scholar] [CrossRef]
- Sicard, P.; Vas, N.; Calatayud, V.; García Breijo, F.J.; Reig-Armiñana, J.; Snaz, M.; Dalstein, L. Dommages forestiers et pollution à l’ozone dans les réserves naturelles: Le cas de l’arolle dans le sud-est de la France. Foręt Méditerranéenne 2010, 31, 273–286. [Google Scholar]
- Bičárová, S.; Mačutek, J.; Bilčík, D. Climate of submontane location Stará Lesná (1988-2013). Contrib. Geophys. Geod. 2014, 44, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Ulber, M.; Gugerli, F.; Bozic, G. Swiss stone pine (Pinus cembra). EUFORGEN Tech. Guidel. Genet. Conserv. Use 2004, 4. Available online: http://www.euforgen.org/fileadmin//templates/euforgen.org/upload/Publications/Technical_guidelines/Technical_Guidelines_Pinus_cembra.pdf (accessed on 28 July 2021).
- Casalegno, S.; Amatulli, G.; Camia, A.; Nelson, A.; Pekkarinen, A. Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. For. Ecol. Manag. 2010, 259, 750–761. [Google Scholar] [CrossRef]
- LiCOR6400 Manual. Available online: https://www.licor.com/documents/b5e98kr2wbjuh8g8eo4r (accessed on 28 July 2021).
- Langenberg, S.; Carstens, T.; Hupperich, D.; Schweighoefer, S.; Schurath, U. Technical note: Determination of binary gas-phase diffusion coefficients of unstable and adsorbing atmospheric trace gases at low temperature—Arrested flow and twin tube method. Atmos. Chem. Phys. 2000, 20, 3669–3682. [Google Scholar] [CrossRef] [Green Version]
- Emberson, L.D.; Büker, P.; Ashmore, M.R. Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions. Environ. Pollut. 2007, 147, 454–466. [Google Scholar] [CrossRef]
- Gerosa, G.; Marzuoli, R.; Desotgiu, R.; Bussotti, F.; Ballarin-Denti, A. Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy. Environ. Pollut. 2009, 157, 1497–1505. [Google Scholar] [CrossRef]
- Goumenaki, E.; Fernandez, I.G.; Papanikolaou, A.; Papadopoulou, D.; Askianakis, C.; Kouvarakis, G.; Barnes, J. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop. Environ. Pollut. 2007, 146, 699–706. [Google Scholar] [CrossRef]
- Emberson, L.D.; Simpson, D.; Tuovinen, J.-P.; Ashmore, M.R.; Cambridge, H.M. Towards a Model of Ozone Deposition and Stomatal Uptake over Europe; EMEP/MSC-W 2000; Norwegian Meteorological Institute: Oslo, Norway, 2000.
- Op de Beeck, M.; Löw, M.; Deckmyn, G.; Ceulemans, R. A comparison of photosynthesis-dependent stomatal models using twig cuvette field data for adult beech (Fagus sylvatica L.). Agric. For. Meteorol. 2010, 150, 531–540. [Google Scholar] [CrossRef]
- Fares, S.; Matteucci, G.; Scarascia Mugnozza, G.; Morani, A.; Calfapietra, C.; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmos. Environ. 2013, 67, 242–251. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Harmens, H.; Hayes, F.; Pleijel, H.; Büker, P.; González, I.; Alonso, R.; Bender, J.; Bergmann, E.; Bermejo, V.; et al. Scientific Background Document B: Developing Areas of Research of Relevance to Chapter III (Mapping Critical Levels for Vegetation) of the Modelling and Mapping Manual of the LRTAP Convention. 2020. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/Scientific%20Background-%20document%20B%20June%202020.pdf (accessed on 30 November 2020).
- Bičárová, S.; Sitková, Z.; Pavlendová, H.; Fleischer, P.; Bytnerowicz, A.; Fleischer, P. The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmos. Pollut. Res. 2019, 10, 283–293. [Google Scholar] [CrossRef]
- Hoshika, Y.; Fares, S.; Savi, F.; Gruening, C.; Goded, I.; De Marco, A.; Sicard, P.; Paoletti, E. Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric. For. Meteorol. 2017, 234–235, 212–221. [Google Scholar] [CrossRef]
- Wieser, G.; Emberson, L. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies. Atmos. Environ. 2004, 38, 2339–2348. [Google Scholar] [CrossRef]
- Misson, L.; Panek, J.A.; Goldstein, A.H. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests. Tree Physiol. 2004, 24, 529–541. [Google Scholar] [CrossRef] [Green Version]
Date | Mode | Count | No. of Sets | Start Time | End Time | Mean T | Mean VPD | Mean PAR | Synoptic Situation |
---|---|---|---|---|---|---|---|---|---|
CET | CET | °C | kPa | ||||||
16 July | WoTA | 19 | - | 08:43 | 11:29 | 20.9 | 0.4 | 1395 | Cv |
9 August | WoTA | 37 | - | 08:27 | 12:41 | 29.4 | 2.3 | 1500 | NWc |
13 August | WoTA | 55 | - | 09:36 | 15:54 | 25.6 | 1.5 | 1099 | Wal |
14 August | WoTA | 37 | - | 09:34 | 14:44 | 27.5 | 1.7 | 1529 | Wal |
1 September | WoTA | 15 | - | 11:04 | 12:55 | 29.5 | 1.5 | 1500 | Wa |
3 September | WoTA | 28 | - | 10:11 | 12:48 | 27.1 | 1.3 | 1000 | Wa |
4 September | WTA | 13 | 2 | 14:03 | 15:44 | 32.2 | 3.3 | 269 | Bp |
5 September | WTA | 32 | 10 | 14:37 | 19:40 | 25.1 | 2.0 | 762 | Bp |
6 September | WTA | 54 | 15 | 10:05 | 16:53 | 26.1 | 0.6 | 774 | Ap1 |
7 September | WTA | 60 | 15 | 10:21 | 17:46 | 25.9 | 0.9 | 816 | Ea |
8 September | WTA | 31 | 6 | 09:29 | 12:38 | 27.8 | 1.6 | 652 | Ea |
12 September | WTA | 56 | 9 | 08:42 | 14:41 | 25.4 | 0.9 | 718 | A |
14 September | WTA | 92 | 6 | 09:14 | 19:07 | 27.4 | 1.2 | 735 | Ea |
15 September | WTA | 63 | 10 | 10:04 | 17:26 | 26.3 | 1.7 | 753 | Ea |
25 October | WTA | 64 | 10 | 10:29 | 16:34 | 14.8 | 0.2 | 772 | Bp |
27 October | WTA | 102 | 26 | 09:28 | 18:40 | 12.2 | 0.3 | 837 | Wa |
31 October | WTA | 84 | 14 | 10:38 | 19:06 | 9.5 | 0.3 | 736 | NWa |
4 November | WTA | 63 | 10 | 10:06 | 16:13 | 6.0 | 0.3 | 780 | Ap2 |
5 November | WTA | 43 | 7 | 13:42 | 17:46 | 8.1 | 0.2 | 779 | B |
Param. | Unit | Boreal Coniferous Picea abies [18] | Continental Coniferous Picea abies [18] | Pinus sylvestris [43] | Temporal Coniferous P. abies, P. sylvestris [46] | Atlantic Coniferous Pinus sylvestris [50] | Mediterranean Coniferous Pinus halepensis [50] | Pinus mugo [51] | Pinus pinea [52] | Picea abies [53] |
---|---|---|---|---|---|---|---|---|---|---|
125 | 130 | 180 | 146 | 190 | 230 | 160/110 | 380 | 50 | ||
0.1 | 0.16 | 0.1 | 0.1 | 0.1 | 0.025 | 0.1 | 0.03 | 0.1 | ||
0.006 | 0.01 | 0.0075 | 0.0083 | 0.006 | 0.013 | 0.008 | 0.0032 | 0.01 | ||
°C | 0 | 0 | 1 | 1 | 0 | 10 | 1 | 6 | −5 | |
°C | 20 | 14 | 19 | 18 | 20 | 27 | 18 | 20 | 9 | |
°C | 200 e | 35 | 36 | 36 | 36 | 38 | 36 | 39 | 35 | |
kPa | 0.8 | 0.5 | 0.6 | 0.7 | 0.6 | 1.0 | 0.6 | 0.6 | 0.6 | |
kPa | 2.8 | 3.0 | 2.8 | 3 | 2.8 | 3.2 | 3.3 | 4.2 | 3.5 |
Parameter | Unit | Values Used in Parameterization | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
* | 50 | 110 | 125 | 130 | 146 | 160 | 180 | 190 | 230 | 380 | |
- | 0.0032 | 0.006 | 0.0075 | 0.0083 | 0.01 | 0.013 | - | - | - | - | |
- | 0.025 | 0.03 | 0.1 | 0.16 | - | - | - | - | - | - | |
°C | −5 | 0 | 1 | 6 | 10 | - | - | - | - | - | |
°C | 9 | 12 | 14 | 18 | 19 | 20 | 27 | - | - | - | |
°C | 35 | 36 | 38 | 39 | 200 | - | - | - | - | - | |
kPa | 0.0 | 0.25 | 0.5 | 0.6 | 0.7 | 0.8 | 1.0 | - | - | - | |
kPa | 2.5 | 2.8 | 3.0 | 3.3 | 3.5 | 4.2 | - | - | - | - |
Boreal Coniferous Picea abies [18] | Continental Coniferous Picea abies [18] | Pinus sylvestris [43] | Temporal Coniferous Pic. abies, Pin. sylvestris [46] | Atlantic Coniferous Pinus sylvestris [50] | Mediterranean Coniferous Pinus halepensis [50] | Pinus mugo [51] | Pinus pinea [52] | Picea abies [53] | |
---|---|---|---|---|---|---|---|---|---|
WoTA—Measurements without adjustment of internal chamber temperature | |||||||||
0.75 | 0.40 | 0.66 | 0.63 | 0.71 | 0.63 | 0.59 | 0.59 | 0.31 | |
30.1 | 26.5 | 48.4 | 32.1 | 57.0 | 116.1 | 38.6/20.5 | 172.9 | 51.0 | |
22.7 | −8.5 | 36.9 | 19.9 | 46.6 | 104.0 | 27.8/2.0 | 159.6 | −43.1 | |
WTA—Measurements with adjustment of internal chamber temperature | |||||||||
0.07 | 0.20 | 0.11 | 0.11 | 0.09 | 0.03 | 0.11 | 0.01 | 0.17 | |
53.4 | 47.4 | 74.9 | 58.5 | 80.4 | 111.4 | 65.2/42.5 | 164.2 | 42.2 | |
30.5 | 24.5 | 54.3 | 36.8 | 59.3 | 52.2 | 44.6/14.5 | 117.7 | −24.2 |
Mode | Param | ||||||||
---|---|---|---|---|---|---|---|---|---|
Units | °C | °C | °C | kPa | kPa | ||||
WoTA | BC | 125/88 | 0.1 | 0.006 | 0 | 20 | 200 | 0.8 | 2.8 |
WoTA | OP | 113 | 0.1 | 0.0032 | 0 | 27 | 200 | 0.25 | 2.5 |
WTA | CC | 130/81 | 0.16 | 0.01 | 0 | 14 | 35 | 0.5 | 3.0 |
WTA | OP | 92 | 0.025 | 0.013 | 1 | 14 | 200 | 0.0 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchholcerová, A.; Fleischer, P., Jr.; Štefánik, D.; Bičárová, S.; Lukasová, V. Specification of Modified Jarvis Model Parameterization for Pinus cembra. Atmosphere 2021, 12, 1388. https://doi.org/10.3390/atmos12111388
Buchholcerová A, Fleischer P Jr., Štefánik D, Bičárová S, Lukasová V. Specification of Modified Jarvis Model Parameterization for Pinus cembra. Atmosphere. 2021; 12(11):1388. https://doi.org/10.3390/atmos12111388
Chicago/Turabian StyleBuchholcerová, Anna, Peter Fleischer, Jr., Dušan Štefánik, Svetlana Bičárová, and Veronika Lukasová. 2021. "Specification of Modified Jarvis Model Parameterization for Pinus cembra" Atmosphere 12, no. 11: 1388. https://doi.org/10.3390/atmos12111388
APA StyleBuchholcerová, A., Fleischer, P., Jr., Štefánik, D., Bičárová, S., & Lukasová, V. (2021). Specification of Modified Jarvis Model Parameterization for Pinus cembra. Atmosphere, 12(11), 1388. https://doi.org/10.3390/atmos12111388