Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analysis
2.3. Estimating the Area Affected by Poor Air Quality
- Apply the hourly model at different wind angles and a pre-determined fire area to predict the maximum distance from the fire perimeter of exceedance under median weather conditions.
- Using the mean distance (R) across all angles, calculate the area of a circle πR2. Notice, an adjustment was made for the radius of the fire (distances were measured from the fire boundary).
- Repeat for fires of increasing area.
3. Results
3.1. Trends in Hourly Observations
3.2. Statistical Analysis
3.3. Estimating the Area Affected by Poor Air Quality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Price, O.F.; Bradstock, R.A. Quantifying the influence of fuel age and weather on the annual extent of unplanned fires in the Sydney region of Australia. Int. J. Wildland Fire 2011, 20, 142–151. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 2012, 113, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Bowman, D.; Price, O.; Henderson, S.; Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed smoke. Environ. Res. Lett. 2016, 11, 125009. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Haikerwal, A.; Akram, M.; Sim, M.R.; Meyer, M.; Abramson, M.J.; Dennekamp, M. Fine particulate matter (PM2.5) exposure during a prolonged wildfire period and emergency department visits for asthma. Respirology 2016, 21, 88–94. [Google Scholar] [CrossRef]
- Cooper, N. The trade-off between smoke from wild and prescribed forest fires. In Air Quality and Smoke from Urban and Forest Fires; National Academy of Science: Fort Collins, CO, USA, 1976. [Google Scholar]
- Yao, J.; Brauer, M.; Henderson, S.B. Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection. Environ. Health Perspect. 2014, 121, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Saide, P.E.; Peterson, D.A.; da Silva, A.; Anderson, B.; Ziemba, L.D.; Diskin, G.; Sachse, G.; Hair, J.; Butler, C.; Fenn, M.; et al. Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion. Geophys. Res. Lett. 2015, 42, 3609–3618. [Google Scholar] [CrossRef] [Green Version]
- Price, O.F.; Horsey, B.; Jiang, N. Local and regional smoke impacts from prescribed fires. Nat. Hazards Earth Syst. Sci. 2016, 16, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Navarro, K.M.; Schweizer, D.; Balmes, J.R.; Cisneros, R. A Review of Community Smoke Exposure from Wildfire Compared to Prescribed Fire in the United States. Atmosphere 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Broome, R.A.; Johnstone, F.H.; Horsley, J.; Morgan, G.G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 2016, 205, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, D.; Hart, M.A.; Jiang, N. Meteorological controls on atmospheric particulate pollution during hazard reduction burns. Atmos. Chem. Phys. 2018, 18, 6585–6599. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.L.; Rathbun, S.; Achtemeier, G.; Naeher, L.P. Effect of distance, meteorology, and burn attributes on ground-level particulate matter emissions from prescribed fires. Atmos. Environ. 2012, 56, 203–211. [Google Scholar] [CrossRef]
- Kelleher, S.; Quinn, C.; Miller-Lionberg, D.; Volckens, J. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke. Atmos. Meas. Tech. 2018, 11, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.F.; Koppe, R.K.; Robinson, E. Air and surface measurment of constituents of prescribed forest slash smoke. In Air Quality and Smoke from Urban and Forest Fires; National Academy of Science: Fort Collins, CO, USA, 1976. [Google Scholar]
- Durkin, A.; Gonzalez, R.; Isaksen, T.B.; Walker, E.; Errett, N.A. Establishing a Community Air Monitoring Network in a Wildfire Smoke-Prone Rural Community: The Motivations, Experiences, Challenges, and Ideas of Clean Air Methow’s Clean Air Ambassadors. Int. J. Environ. Res. Public Health 2020, 17, 8393. [Google Scholar] [CrossRef]
- Keith, D.A. Ocean Shores to Desert Dunes: The Native Vegetation of New South Wales and the ACT; Department of Environment and Conservation: Hurstville, Australia, 2004. [Google Scholar]
- Volkova, L.; Meyer, C.P.; Murphy, S.; Fairman, T.; Reisen, F.; Weston, C. Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. Int. J. Wildland Fire 2014, 23, 771–780. [Google Scholar] [CrossRef]
- Forehead, H.; Barthelemy, J.; Versaevel, N.; Price, O.; Perez, P. Traffic exhaust to wildfires: PM2.5 measurements with fixed and portable, low-cost LoRaWAN-connected sensors. PLoS ONE 2020, 15, e0231778. [Google Scholar] [CrossRef]
- Mills, G.; McCaw, L. Atmospheric Stability Environments and Fire Weather in Australia—Extending the Haines Index; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2010; p. 151. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. J. Stat. Softw. 2014. Available online: https://rdrr.io/cran/lme4/ (accessed on 15 January 2021).
- Aryal, R, Kafley, D, Beechami, S, Morawska, L Air Quality in the Sydney Metropolitan Region during the 2013 Blue Mountains Wildfire. Aerosol Air Qual. Res. 2018, 18, 2420–2432. [CrossRef] [Green Version]
- Larsen, A.E.; Reich, B.J.; Ruminski, M.; Rappold, A.G. Impacts of fire smoke plumes on regional air quality, 2006-2013. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Strand, T.; Larkin, N.; Rorig, M.; Krull, C.; Moore, M. PM2.5 measurements in wildfire smoke plumes from fire seasons 2005–2008 in the Northwestern United States. J. Aerosol Sci. 2011, 42, 143–155. [Google Scholar] [CrossRef]
- Hart, M.; De Dear, R.; Hyde, R. A synoptic climatology of tropospheric ozone episodes in Sydney, Australia. Int. J. Climatol. 2006, 26, 1635–1649. [Google Scholar] [CrossRef]
- Clarke, H.; Tran, B.; Boer, M.; Price, O.; Kenny, B.; Bradstock, R. Climate change effects on the frequency, seasonality and interannual variability of suitable prescribed burning weather conditions in south-eastern Australia. Agric. For. Meteorol. 2020, 271, 148–157. [Google Scholar] [CrossRef]
- Price, O.F.; Purdam, P.J.; Bowman, D.M.J.S.; Williamson, G. Comparing the height and area of wild and prescribed fire smoke particle plumes in southeast Australia using weather radar. Int. J. Wildland Fire 2018, 27, 525–537. [Google Scholar] [CrossRef]
Map Number | Fire Name | Date | Area (Ha) | Observations | C Haines | Surface Pressure (hPa) | Inversion Temp. (°C) | Mixing Height (m) | Max Exceedance Distance (km) | Pred. Max. Exceed. Dist. (Day, m) | Pred. Max. Exceed. Dist. (Eve, m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cataract 1 | 22 August 2015 | 18.8 | 48 | 6.33 | 1019 | 2.2 | 5 | 1.23 | 2.00 | 1.48 |
2 | Cataract 2 | 9 October 2015 | 300.1 | 49 | −0.95 | 1033 | −2.7 | 934 | 2.39 | NA | NA |
3 | Woronora | 10 March 2019 | 98.2 | 395 | 4.35 | 1015 | 0.3 | 5 | 7.72 | 4.02 | 4.02 |
4 | Back Run Creek | 28 March 2019 | 150.0 | 177 | −0.63 | 1020 | −0.9 | 177 | 2.96 | 0.00 | NA |
5 | Coalcliff | 13 April 2019 | 47.8 | 387 | 2.52 | 1023 | 1.9 | 73 | 8.67 | 0.08 | 0.00 |
6 | Wilson | 17 April 2019 | 138.1 | 513 | 3.08 | 1024 | 2.7 | 20 | 8.15 | 0.00 | 1.34 |
7 | Dhalia | 28 April 2019 | 204.5 | 344 | 10.35 | 1020 | 4 | 5 | 1.22 | 2.70 | NA |
8 | Waterfall West | 17 May 2019 | 70.7 | 413 | 3.63 | 1026 | 3.4 | 78 | 4.83 | 0.00 | 4.45 |
9 | Lawson | 19 May 2019 | 1298.0 | 698 | 0.07 | 1029 | 2.6 | 5 | 34.01 | 6.00 | 12.09 |
10 | Avon | 1 June 2019 | 926.5 | 223 | 0.52 | 1025 | 3.4 | 21 | 18.82 | 8.96 | NA |
11 | Triplarina 1 * | 15 July 2019 | 0.2 | 122 | −0.58 | 1015 | −2 | 779 | 0.37 | 0.15 | 0.02 |
12 | Triplarina 2 * | 16 July 2019 | 1.0 | 94 | 9.52 | 1016 | 1.8 | 21 | 0.14 | 0.54 | 0.00 |
13 | Yellomundee * | 27 July 2019 | 0.5 | 196 | 2.88 | 1021 | 1.6 | 70 | 0 | 0.00 | 0.00 |
14 | Bowen Mtn | 3 August 2019 | 177.3 | 375 | 7.45 | 1027 | 3.4 | 103 | 8.40 | NA | 4.45 |
15 | Heathcote | 7 August 2019 | 97.1 | 394 | 10.72 | 1014 | 5.6 | 13 | 5.16 | 3.64 | 3.29 |
16 | Bowen Mtn 2 | 13 August 2019 | 174.4 | 417 | 3.18 | 1023 | 0.8 | 5 | 28.25 | NA | 6.63 |
17 | Woodfield | 16 September 2020 | 15.6 | 180 | 8.4 | 1024 | 1.4 | 5 | 1.15 | 0.00 | 0.00 |
18 | Abaroo | 10 October 2020 | 190.7 | 420 | 3.92 | 1017 | 0.6 | 5 | 6.51 | 0.00 | 0.05 |
Variable | Estimate | Std. Error | T Value | p |
---|---|---|---|---|
(Intercept) | 517.662 | 74.553 | 6.944 | <0.001 |
Logdist | −57.215 | 8.398 | −6.813 | <0.001 |
Windangle | −1.618 | 0.213 | −7.589 | <0.001 |
Evening | 20.164 | 38.419 | 0.525 | ns |
Night | −92.417 | 41.134 | −2.247 | <0.05 |
Temperature | −27.923 | 3.012 | −9.271 | <0.001 |
Logarea | 191.918 | 16.615 | 11.551 | <0.001 |
C_haines | 19.470 | 3.861 | 5.042 | <0.001 |
Logdist:Windangle | 0.176 | 0.026 | 6.887 | <0.001 |
Logdist:Evening | −1.603 | 3.545 | −0.452 | ns |
Logdist:Night | 16.686 | 3.913 | 4.265 | <0.01 |
Logdist:Temperature | 3.056 | 0.328 | 9.307 | <0.001 |
Logdist:Logarea | −20.060 | 1.713 | −11.711 | <0.001 |
Logdist:C_haines | −2.121 | 0.460 | −4.612 | <0.001 |
Temperature:Evening | −2.297 | 0.985 | −2.331 | <0.01 |
Temperature:Night | −2.645 | 0.975 | −2.714 | <0.01 |
Logarea:Evening | 29.334 | 5.428 | 5.404 | <0.001 |
Logarea:Night | −0.787 | 5.475 | −0.144 | ns |
C_haines:Evening | −2.204 | 1.173 | −1.879 | <0.05 |
C_haines:Night | −2.543 | 1.295 | −1.965 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Price, O.F.; Forehead, H. Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors. Atmosphere 2021, 12, 1389. https://doi.org/10.3390/atmos12111389
Price OF, Forehead H. Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors. Atmosphere. 2021; 12(11):1389. https://doi.org/10.3390/atmos12111389
Chicago/Turabian StylePrice, Owen Francis, and Hugh Forehead. 2021. "Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors" Atmosphere 12, no. 11: 1389. https://doi.org/10.3390/atmos12111389
APA StylePrice, O. F., & Forehead, H. (2021). Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors. Atmosphere, 12(11), 1389. https://doi.org/10.3390/atmos12111389