Ozone Effects on Douro Vineyards under Climate Change
Abstract
:1. Introduction
2. Methodology
2.1. WRF-CHIMERE Modeling System
2.2. Vineyards’ Exposure to Ozone
3. Effects of Ozone on Vineyards
3.1. AOT40
3.2. Productivity and Quality Losses
3.3. Ozone Dry Deposition
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Fiore, A.M.; Naik, V.; Leibensperger, E.M. Air Quality and Climate Connections. J. Air Waste Manag. Assoc. 2015, 65, 645–685. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef] [Green Version]
- Reid, N.; Misra, P.K.; Amman, M.; Hales, J. Air Quality Modeling for Policy Development. J. Toxicol. Environ. Health Part A 2007, 70, 295–310. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Carvalho, A.; Monteiro, A.; Solman, S.; Miranda, A.I.; Borrego, C. Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environ. Sci. Policy 2010, 13, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Katragkou, E.; Zanis, P.; Kioutsioukis, I.; Tegoulias, I.; Melas, D.; Krger, B.C.; Coppola, E. Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. J. Geophys. Res. Atmos. 2011, 116, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Meleux, F.; Solmon, F.; Giorgi, F. Increase in summer European ozone amounts due to climate change. Atmos. Environ. 2007, 41, 7577–7587. [Google Scholar] [CrossRef]
- Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 2007, 448, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Lacressonnière, G.; Peuch, V.-H.; Vautard, R.; Arteta, J.; Déqué, M.; Joly, M.; Josse, B.; Marécal, V.; Saint-Martin, D. European air quality in the 2030s and 2050s: Impacts of global and regional emission trends and of climate change. Atmos. Environ. 2014, 92, 348–358. [Google Scholar] [CrossRef]
- Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. Atmos. Environ. 2016, 131, 209–224. [Google Scholar] [CrossRef]
- Andersson, C.; Engardt, M. European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. J. Geophys. Res. Atmos. 2010, 115, 2303. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry, and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Barros, N.; Fontes, T.; Silva, M.P.; Manso, M.C.; Carvalho, A.C. Analysis of the effectiveness of the NEC Directive on the tropospheric ozone levels in Portugal. Atmos. Environ. 2015, 106, 80–91. [Google Scholar] [CrossRef]
- Mills, G.; Hayes, F.; Simpson, D.; Emberson, L.; Norris, D.; Harmens, H.; Büker, P. Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Glob. Chang. Biol. 2011, 17, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Booker, F.; Muntifering, R.; Mcgrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Ward, D.; Rocha, A.; Viceto, C.; Ribeiro, A.C.; Feliciano, M.; Paoletti, E.; Miranda, A.I. Validation of meteorological and ground-level ozone WRF-CHIMERE simulations in a mountainous grapevine growing area for phytotoxic risk assessment. Atmos. Environ. 2021, 259, 118507. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos. Environ. 2011, 45, 2297–2309. [Google Scholar] [CrossRef]
- Ascenso, A.; Gama, C.; Blanco-Ward, D.; Monteiro, A.; Silveira, C.; Viceto, C.; Rodrigues, V.; Rocha, A.; Borrego, C.; Lopes, M.; et al. Assessing Douro Vineyards Exposure to Tropospheric Ozone. Atmosphere 2021, 12, 200. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Climate change impact on a wine-producing region using a dynamical downscaling approach: Climate parameters, bioclimatic indices and extreme indices. Int. J. Climatol. 2019, 39, 5741–5760. [Google Scholar] [CrossRef]
- Martins, J.; Fraga, H.; Fonseca, A.; Santos, J.A. Climate Projections for Precipitation and Temperature Indicators in the Douro Wine Region: The Importance of Bias Correction. Agrony 2021, 11, 990. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Moutinho-Pereira, J. Climate change projections for the portuguese viticulture using a multi-model ensemble. Cienc. Tec. Vitivinic. 2012, 27, 39–48. [Google Scholar]
- van Leeuwen, C.; Schultz, H.R.; Garcia de Cortazar-Atauri, I.; Duchêne, E.; Ollat, N.; Pieri, P.; Bois, B.; Goutouly, J.-P.; Quénol, H.; Touzard, J.-M.; et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl. Acad. Sci. USA 2013, 110, E3051–E3052. [Google Scholar] [CrossRef] [Green Version]
- Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Ward, D.; Ribeiro, A.; Paoletti, E.; Miranda, A.I. Assessment of tropospheric ozone phytotoxic effects on the grapevine (Vitis vinifera L.): A review. Atmos. Environ. 2021, 244, 117924. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth, Parts A/B/C 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Schmidt, H. A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmos. Environ. 2001, 35, 6277–6297. [Google Scholar] [CrossRef]
- Bessagnet, B.; Hodzic, A.; Vautard, R.; Beekmann, M.; Cheinet, S.; Honoré, C.; Liousse, C.; Rouil, L. Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale. Atmos. Environ. 2004, 38, 2803–2817. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- EMEP/CEIP Emissions as Used in EMEP Models. Available online: https://www.ceip.at/webdab-emission-database/emissions-as-used-in-emep-models (accessed on 31 August 2020).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- European Aviation Environmental Report. 2019. Available online: https://ec.europa.eu/transport/sites/default/files/2019-aviation-environmental-report.pdf (accessed on 21 September 2021).
- EMSA (European Maritime Safety Agency); EEA (European Environment Agency). European Maritime Transport Environmental Report 2021; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789294803719. [Google Scholar]
- Soja, G.; Reichenauer, T.G.; Eid, M.; Soja, A.-M.; Schaber, R.; Gangl, H. Long-term ozone exposure and ozone uptake of grapevines in open-top chambers. Atmos. Environ. 2004, 38, 2313–2321. [Google Scholar] [CrossRef]
- Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; et al. Investigating a high ozone episode in a rural mountain site. Environ. Pollut. 2012, 162, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Souto, J.A.; Casares, J.J. High ozone levels in the northeast of Portugal: Analysis and characterization. Atmos. Environ. 2010, 44, 1020–1031. [Google Scholar] [CrossRef]
- Borrego, C.; Monteiro, A.; Martins, H.; Ferreira, J.; Fernandes, A.P.; Rafael, S.; Miranda, A.I.; Guevara, M.; Baldasano, J.M. Air quality plan for ozone: An urgent need for North Portugal. Air Qual. Atmos. Health 2016, 9, 447–460. [Google Scholar] [CrossRef]
- Monteiro, A.; Gama, C.; Cândido, M.; Ribeiro, I.; Carvalho, D.; Lopes, M. Investigating ozone high levels and the role of sea breeze on its transport. Atmos. Pollut. Res. 2016, 7, 339–347. [Google Scholar] [CrossRef]
- Evtyugina, M.G.; Nunes, T.; Alves, C.; Marques, M.C. Photochemical pollution in a rural mountainous area in the northeast of Portugal. Atmos. Res. 2009, 92, 151–158. [Google Scholar] [CrossRef]
- IVDP. IVDP Estatística Geral. Available online: https://areareservada.ivdp.pt/estatisticas_novo2.php?codIdioma=0 (accessed on 12 December 2018).
- Instituto da Vinha e do Vinho. Anuário Vinhos e Aguardentes de Portugal. Available online: https://www.ivv.gov.pt/np4/Anuário (accessed on 10 September 2021).
- Klingberg, J.; Engardt, M.; Uddling, J.; Karlsson, P.E.; Pleijel, H. Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A 2011, 63, 174–187. [Google Scholar] [CrossRef] [Green Version]
Scenario | BASE | MT | MT_emis | LT | LT_emis |
---|---|---|---|---|---|
Years | 2003–2005 | 2049; 2064 | 2049; 2064 | 2096; 2097 | 2096; 2097 |
Meteorological forcing | ERA-Interim reanalysis | MPI-ESM-LR | MPI-ESM-LR | MPI-ESM-LR | MPI-ESM-LR |
Anthropogenic emissions | Base inventory emissions | Base inventory emissions | Projected emissions for 2050 | Base inventory emissions | Projected emissions for 2100 |
Indicator | Statistic | BASE | MT | MT_emis | LT | LT_emis |
---|---|---|---|---|---|---|
AOT40 (μg·m−3·h) | max | 26,685 | 26,473 | 22,517 | 29,981 | 25,118 |
min | 17,373 | 17,469 | 7784 | 18,578 | 9801 | |
avg | 22,569 | 22,237 | 17,925 | 24,231 | 20,702 | |
Productivity Loss (%) | max | 32.5 | 32.2 | 27.0 | 36.8 | 30.4 |
min | 20.3 | 20.4 | 7.8 | 21.9 | 10.4 | |
avg | 27.1 | 26.7 | 21.0 | 29.3 | 24.7 | |
Quality Loss (%) | max | 37.4 | 37.1 | 32.3 | 41.4 | 35.4 |
min | 25.9 | 26.1 | 14.2 | 27.4 | 16.6 | |
avg | 32.3 | 31.9 | 26.6 | 34.4 | 30.0 | |
O3 Dry Deposition (g·m−2) | max | 0.8 | 0.5 | 0.5 | 0.6 | 0.5 |
min | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | |
avg | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascenso, A.; Gama, C.; Silveira, C.; Viceto, C.; Rocha, A.; Lopes, M.; Miranda, A.I. Ozone Effects on Douro Vineyards under Climate Change. Atmosphere 2021, 12, 1238. https://doi.org/10.3390/atmos12101238
Ascenso A, Gama C, Silveira C, Viceto C, Rocha A, Lopes M, Miranda AI. Ozone Effects on Douro Vineyards under Climate Change. Atmosphere. 2021; 12(10):1238. https://doi.org/10.3390/atmos12101238
Chicago/Turabian StyleAscenso, Ana, Carla Gama, Carlos Silveira, Carolina Viceto, Alfredo Rocha, Myriam Lopes, and Ana Isabel Miranda. 2021. "Ozone Effects on Douro Vineyards under Climate Change" Atmosphere 12, no. 10: 1238. https://doi.org/10.3390/atmos12101238
APA StyleAscenso, A., Gama, C., Silveira, C., Viceto, C., Rocha, A., Lopes, M., & Miranda, A. I. (2021). Ozone Effects on Douro Vineyards under Climate Change. Atmosphere, 12(10), 1238. https://doi.org/10.3390/atmos12101238