Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Synthetic Aperture Radar (SAR) Data and Interferometic Processing
2.3. SMOS Level 3 Surface Soil Moisture (SSM) Products
2.4. Signal Processing Using Fourier Analysis
2.5. Signal Processing Using Wavelet Analysis
2.6. Clay Layer Characterization Using Electric Method
3. Results
3.1. Intercomparison of InSAR and In Situ Displacement Time Series
3.2. Electrical Tomography Survey
3.3. Intercomparison of In Situ Soil Moistures and SMOS Satellite Surface Soil Moistures
4. Discussion
4.1. Intercomparison of InSAR and In Situ Displacement Time Series
4.2. Shrinking and Swelling Periods Using Fourier Power Spectra and Continuous Wavelet Transform
- December 2017 is the start of the swelling period for EXT2 corresponding to the maximum of power at the P21 and P22 periods (at 1.25 yr in Figure 7). Both swelling periods at WP cell are unraveled at different times, before 1.25 yr for P21 period and after 1.5 yr for P22 period.
4.3. Estimating Variations of Expansive Clay Depth and Thickness Using the Time Series Phase Difference
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, M.; Le Roy, S.; Dubus, I.; Surdyk, N. Experimental monitoring of water content and vertical displacements in clayey soils exposed to shrinking and swelling. Rev. Française Géotechnique 2007, 120–121, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.; Denis, A.; Fabre, R.; Lataste, J.-F.; Chrétien, M. In situ study of the shrinkage-swelling of a clay soil over several cycles of drought-rewetting. Eng. Geol. 2015, 192, 63–75. [Google Scholar] [CrossRef]
- Declercq, P.-Y.; Walstra, J.; Gérard, P.; Pirard, E.; Perissin, D.; Meyvis, B.; Devleeschouwer, X. A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period. Geosciences 2017, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Foumelis, M.; Papageorgiou, E.; Stamatopoulos, C. Episodic ground deformation signals in Thessaly Plain (Greece) revealed by data mining of SAR interferometry time series. Int. J. Remote Sens. 2016, 37, 3696–3711. [Google Scholar] [CrossRef]
- Foumelis, M. Human induced groundwater level declination and physical rebound in northern Athens Basin (Greece) observed by multi-reference DInSAR techniques. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 820–823. [Google Scholar]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A Methodology to Detect and Characterize Uplift Phenomena in Urban Areas Using Sentinel-1 Data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Burnol, A.; Aochi, H.; Raucoules, D.; Veloso, F.M.L.; Koudogbo, F.N.; Fumagalli, A.; Chiquet, P.; Maisons, C. Wavelet-based analysis of ground deformation coupling satellite acquisitions (Sentinel-1, SMOS) and data from shallow and deep wells in Southwestern France. Sci. Rep. 2019, 9, 8812. [Google Scholar] [CrossRef] [Green Version]
- Fryksten, J.; Nilfouroushan, F. Analysis of Clay-Induced Land Subsidence in Uppsala City Using Sentinel-1 SAR Data and Precise Leveling. Remote Sens. 2019, 11, 2764. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Bourgine, B.; De Michele, M.; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Foumelis, M.; Papadopoulou, T.; Bally, P.; Pacini, F.; Provost, F.; Patruno, J. Monitoring Geohazards Using On-Demand and Systematic Services on Esa’s Geohazards Exploitation Platform. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5457–5460. [Google Scholar]
- Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; Luca, C.D.; Lanari, R. SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3285–3296. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Manunta, M.; Luca, C.D.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6259–6281. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russian, 2001; Volume 2, p. 308. [Google Scholar]
- Al Bitar, A.; Mialon, A.; Kerr, Y.H.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; Mahmoodi, A.; Tarot, S.; Parrens, M.; et al. The global SMOS Level 3 daily soil moisture and brightness temperature maps. Earth Syst. Sci. Data 2017, 9, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Cabot, F. CATDS-PDC L3SM Aggregated—3-Day, 10-Day and Monthly Global Map of Soil Moisture Values from SMOS Satellite 2016. Available online: https://www.catds.fr/Publications (accessed on 23 September 2021).
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, A.V.; Ronald, W.S. Discrete-Time Signal Processing; Prentice-Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- MATLAB Version 8.1 (R2013a); The MathWorks Inc.: Natick, MA, USA, 2013.
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet analysis of ecological time series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, D.S.; McAteer, R.J.; Lites, B.W.; Judge, P.G.; Mathioudakis, M.; Keenan, F.P. Wavelet phase coherence analysis: Application to a quiet-sun magnetic element. Astrophys. J. 2004, 617, 623. [Google Scholar] [CrossRef] [Green Version]
- Goupillaud, P.; Grossmann, A.; Morlet, J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 1984, 23, 85–102. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Kasdin, N.J. Discrete simulation of colored noise and stochastic processes and 1/f/sup/spl alpha//power law noise generation. Proc. IEEE 1995, 83, 802–827. [Google Scholar] [CrossRef]
- Tomás, R.; Pastor, J.L.; Béjar-Pizarro, M.; Bonì, R.; Ezquerro, P.; Fernández-Merodo, J.A.; Guardiola-Albert, C.; Herrera, G.; Meisina, C.; Teatini, P.; et al. Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study. Proc. IAHS 2020, 382, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.; Barker, R. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Long, M.; Donohue, S.; L’Heureux, J.-S.; Solberg, I.-L.; Ronning, J.S.; Limacher, R.; O’Connor, P.; Sauvin, G.; Romoen, M.; Lecomte, I. Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Can. Geotech. J. 2012, 49, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
Parameters | Ascending Orbit | Descending Orbit |
---|---|---|
Number of scenes | 183 | 178 |
Date of measurement start | 4 September 2016 | 8 September 2016 |
Date of measurement end | 30 December 2019 | 28 December 2019 |
Track number | 59 | 110 |
Repeat cycle | 6 days | 6 days |
Look angle | 37.4 degrees | 42.8 degrees |
Applied algorithm | Parallel SBAS Interferometry Chain | |
Software version | CNR-IREA P-SBAS 28 | |
Date of production | 23 January 2020 | 21 January 2020 |
Geographic Coordinate System | EPSG 4326 | |
Number of looks azimuth | 5 | 5 |
Number of looks range | 20 | 20 |
Polarization | VV | VV |
Temporal Coherence Threshold | 0.85 | 0.85 |
Reference date | 4 September 2016 | 8 September 2016 |
Reference point | Global average of zero-mean points |
Method | 1-Year Period (P0) | Shrinking Period (P1) | Swelling First Period (P21) | Swelling Second Period (P22) | ||||
---|---|---|---|---|---|---|---|---|
Angle ΔΦ (°) | Time (month) | Angle ΔΦ (°) | Time (month) | Angle ΔΦ (°) | Time (month) | Angle ΔΦ (°) | Time (month) | |
FFT at EXT1 | 102.0 | 3.51 | 99.63 | 1.50 | 125.86 | 1.24 | 77.25 | 0.63 |
XWT at EXT1 | 89.09 ± 0.4 | 3.04 ± 0.01 | 101.20 ± 7.94 | 1.63 ± 0.13 | 70.41 ± 7.95 | 1.07 ± 0.12 | 94.82 ± 9.78 | 0.76 ± 0.08 |
FFT at EXT2 | 76.76 | 2.51 | 105.09 | 1.53 | −38.69 | 0.45 | 70.76 | 0.54 |
XWT at EXT2 | 72.35 ± 0.02 | 2.33 ± 0.00 | 106.99 ± 3.68 | 1.73 ± 0.06 | 71.13 ± 3.76 | 0.96 ± 0.05 | 101.28 ± 5.02 | 0.77 ± 0.04 |
FFT at WP cell | 64.75 | 2.08 | 14.68 | 0.23 | 83.81 | 0.86 | 119.70 | 1.03 |
XWT at WP cell | 60.72 ± 0.96 | 1.96 ± 0.03 | 34.48 ± 3.40 | 0.52 ± 0.05 | 71.82 ± 0.98 | 0.73 ± 0.01 | 113.97 ± 13.30 | 0.97 ± 0.11 |
FFT at EP cell | 92.16 | 3.20 | 42.85 | 0.52 | 112.48 | 1.14 | 168.36 | 1.34 |
XWT at EP cell | 90.10 ± 0.32 | 3.08 ± 0.01 | 34.90 ± 3.75 | 0.56 ± 0.06 | 109.66 ± 0.56 | 1.11 ± 0.01 | 144.28 ± 5.42 | 1.15 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burnol, A.; Foumelis, M.; Gourdier, S.; Deparis, J.; Raucoules, D. Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing. Atmosphere 2021, 12, 1262. https://doi.org/10.3390/atmos12101262
Burnol A, Foumelis M, Gourdier S, Deparis J, Raucoules D. Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing. Atmosphere. 2021; 12(10):1262. https://doi.org/10.3390/atmos12101262
Chicago/Turabian StyleBurnol, André, Michael Foumelis, Sébastien Gourdier, Jacques Deparis, and Daniel Raucoules. 2021. "Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing" Atmosphere 12, no. 10: 1262. https://doi.org/10.3390/atmos12101262
APA StyleBurnol, A., Foumelis, M., Gourdier, S., Deparis, J., & Raucoules, D. (2021). Monitoring of Expansive Clays over Drought-Rewetting Cycles Using Satellite Remote Sensing. Atmosphere, 12(10), 1262. https://doi.org/10.3390/atmos12101262