Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in Tanzania
Abstract
:1. Introduction
1.1. P. africana–Its Value, Demand and Conservation Pressures
1.2. Forests and the Circular Economy
2. Material and Methods
2.1. Study Area
2.2. Species Presence Records
2.3. Environmental Variables
2.4. Species Distribution Modeling
2.5. Model Evaluation and Validation
3. Results
3.1. Model Validation and Influencing Bioclimatic Variables
3.2. Current and Future Distribution of P. africana
4. Discussion
4.1. Management Implications
4.2. Institutional and Policy Context for Addressing Challenges Associated with P. africana
4.3. Conservation and Management Approaches to Support Sustainable Practices in Favor of P. africana
4.3.1. Supporting Inclusive Conservation Approaches
4.3.2. Collaboration to Streamline and Align Regional and International Efforts
4.3.3. Leveraging the Potential of Payments for Ecosystem Services (PES)
4.3.4. Incorporating Forest Management into the Circular Economy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Heshmati, I.; Khorasani, N.; Shams-Esfandabad, B.; Riazi, B. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: Implications for environmental monitoring and risk assessment. Environ. Monit. Assess. 2019, 191, 72. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, M.; Paudel, U.; Mondal, B.; Chakraborti, S.; Deb, P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018, 19, 94–105. [Google Scholar] [CrossRef]
- Abrha, H.; Birhane, E.; Hagos, H.; Manaye, A. Predicting suitable habitats of endangered Juniperus procera tree under climate change in Northern Ethiopia. J. Sustain. For. 2018, 37, 842–853. [Google Scholar] [CrossRef]
- Priti, H.; Aravind, N.A.; Uma Shaanker, R.; Ravikanth, G. Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol. Eng. 2016, 89, 14–23. [Google Scholar] [CrossRef]
- Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. Secr. Conv. Biol. Divers. Montr. Tech. Ser. 2009, 43, 1–67. [Google Scholar]
- Berry, P.M.; Dawson, T.P.; Harrison, P.A.; Pearson, R.G. Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob. Ecol. Biogeogr. 2002, 11, 453–462. [Google Scholar] [CrossRef]
- Sommer, J.H.; Kreft, H.; Kier, G.; Jetz, W.; Mutke, J.; Barthlott, W. Projected impacts of climate change on regional capacities for global plant species richness. Proc. R. Soc. B Biol. Sci. 2010, 277, 2271–2280. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.J.; White, D.; Neilson, R.P.; Blaustein, A.R. Predicting climate-induced range shifts: Model differences and model reliability. Glob. Chang. Biol. 2006, 12, 1568–1584. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Porfirio, L.L.; Harris, R.M.B.; Lefroy, E.C.; Hugh, S.; Gould, S.F.; Lee, G.; Bindoff, N.L.; Mackey, B. Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change. PLoS ONE 2014, 9, e113749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stohlgren, T.J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [Google Scholar]
- Botkin, D.B.; Saxe, H.; Araujo, M.B.; Betts, R.; Bradshaw, R.H.; Cedhagen, T.; Chesson, P.; Dawson, T.P.; Etterson, J.R.; Faith, D.P.; et al. Forecasting the effects of global warming on biodiversity. Bioscience 2007, 57, 227–236. [Google Scholar] [CrossRef]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.J.; Hijmans, R.; Huettmann, F.R.; Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Ortega-Huerta, M.A.; Peterson, A.T. Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods. Rev. Mex. Biodivers. 2008, 79, 205–216. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Mwakapeje, E.R.; Ndimuligo, S.A.; Mosomtai, G.; Ayebare, S.; Nyakarahuka, L.; Nonga, H.E.; Mdegela, R.H.; Skjerve, E. Ecological niche modeling as a tool for prediction of the potential geographic distribution of Bacillus anthracis spores in Tanzania. Int. J. Infect. Dis. 2019, 79, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.J.; Zhou, Y.; Cai, Y.P.; Yang, W.; Li, Z.W.; Zhao, X. The influence of climate change on an endangered riparian plant species: The root of riparian Homonoia. Ecol. Indic. 2018, 92, 40–50. [Google Scholar] [CrossRef]
- Loiselle, B.A.; Howell, C.A.; Graham, C.H.; Goerck, J.M.; Brooks, T.; Smith, K.G.; Williams, P.H. Avoiding Pitfalls of Using Species Distribution Models in Conservation Planning. Conserv. Biol. 2003, 17, 1591–1600. [Google Scholar] [CrossRef]
- Saatchi, S.; Buermann, W.; Ter Steege, H.; Mori, S.; Smith, T.B. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens. Environ. 2008, 112, 2000–2017. [Google Scholar] [CrossRef]
- Cheboiwo, J.K.; Mugabe, R.; Langat, D. Review of conservation of Prunus africana and international trade opportunities for its bark in Kenya. J. Emerg. Trends Eng. Appl. Sci. 2014, 5, 372–377. [Google Scholar]
- Bii, C.; Korir, K.R.; Rugutt, J.; Mutai, C. The potential use of Prunus africana for the control, treatment and management of common fungal and bacterial infections. J. Med. Plants Res. 2010, 4, 995–998. [Google Scholar] [CrossRef]
- Jena, A.K.; Vasisht, K.; Sharma, N.; Kaur, R.; Dhingra, M.S.; Karan, M. Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species. J. Ethnopharmacol. 2016, 190, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Mwitari, P.G.; Ayeka, P.A.; Ondicho, J.; Matu, E.N.; Bii, C.C. Antimicrobial Activity and Probable Mechanisms of Action of Medicinal Plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PLoS ONE 2013, 8, e65619. [Google Scholar] [CrossRef] [PubMed]
- Kadu, C.A.C.; Parich, A.; Schueler, S.; Konrad, H.; Muluvi, G.M.; Eyog-Matig, O.; Muchugi, A.; Williams, V.L.; Ramamonjisoa, L.; Kapinga, C.; et al. Bioactive constituents in Prunus africana: Geographical variation throughout Africa and associations with environmental and genetic parameters. Phytochemistry 2012, 83, 70–78. [Google Scholar] [CrossRef]
- Nyamai, D.; Mawia, A.; Wambua, F.; Njoroge, A.; Matheri, F.; Lagat, R.; Kiambi, J.; Ogola, P.; Arika, W.; Cheseto, X.; et al. Pharmacognosy & Natural Products Phytochemical Profile of Prunus africana Stem Bark from Kenya. J. Pharmacogn. Nat. Prod. 2015, 1, 1–8. [Google Scholar] [CrossRef]
- Catalano, S.; Ferretti, M.; Marsili, A.; Morelli, I. New constituents of Prunus africana bark extract. J. Nat. Prod. 1984, 47, 910. [Google Scholar] [CrossRef]
- Maximillian, J.R.; O’Laughlin, J. Toward sustainable harvesting of Africa’s largest medicinal plant export (Prunus africana): A case study in Tanzania. South. For. 2009, 71, 303–309. [Google Scholar] [CrossRef]
- Hall, J.B.; O’Brien, E.M.; Sinclair, F.L. Prunus africana: A monograph. Sch. Agric. For. Sci. Publ. Number Univ. Wales Bangor 2000, 18, 104. [Google Scholar]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Fashing, P.J. Mortality trends in the African cherry (Prunus africana) and the implications for colobus monkeys (Colobus guereza) in Kakamega Forest, Kenya. Biol. Conserv. 2004, 120, 449–459. [Google Scholar] [CrossRef]
- Cunningham, A.; Anoncho, V.F.; Sunderland, T. Power, policy and the Prunus africana bark trade, 1972–2015. J. Ethnopharmacol. 2016, 178, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Chupezi, T.J. Critical Study of Guidance for A National Prunus africana Management Plan-Cameroon. Under the Supervision of Dr Jean Lagarde BETTI, Regional Coordinator of the ITTO–CITES Program in Africa. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2010; pp. 1–33. [Google Scholar]
- Reichel, A.; De Schoenmakere, M.; Gillabel, J. Circular Economy in Europe-Developing the Knowledge Base (European Environment Agency Report No 2/2016); European Environmental Agency: Luxembourg, 2016; ISBN 9789292137199. [Google Scholar]
- Ia, W. Forestry and Forestry Based Industry Implications Digitalisation and Circular Economy: Forestry and Forestry Based Industry Implications; Union of Scientists of Bulgaria: Sofia, Republic of Bulgaria, 2019; ISBN 9789543970421. [Google Scholar]
- Pirc Barčić, A.; Kitek Kuzman, M.; Haviarova, E.; Oblak, L. Circular economy & Sharing collaborative economy principles: A case study conducted in wood-based sector. In Digitalisation and Circular Economy: Forestry and Forestry Based Industry Implications; Union of Scientists of Bulgaria: Sofia, Republic of Bulgaria, 2019; pp. 23–28. [Google Scholar]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Magehema, A.; Chang, L.; Mkoma, S. Implication of rainfall variability on maize production in Morogoro, Tanzania. Int. J. Environ. Sci. 2014, 4, 1077–1086. [Google Scholar] [CrossRef]
- Capitani, C.; Van Soesbergen, A.; Mukama, K.; Malugu, I.; Mbilinyi, B.; Chamuya, N.; Kempen, B.; Malimbwi, R.; Mant, R.; Munishi, P.; et al. Scenarios of Land Use and Land Cover Change and Their Multiple Impacts on Natural Capital in Tanzania. Environ. Conserv. 2019, 46, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Giliba, R.A. Effects of Climate Change on Potential Geographical Distribuition of Prunus africana (African cherry) in the Eastern Arc Mountain Forests of Tanzania. Master’s Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Zhang, Q.; Wen, J.; Chang, Z.; Xie, C.; Song, J. Evaluation and prediction of ecological suitability of medicinal plant American ginseng (Panax quinquefolius). Chin. Herb. Med. 2018, 10, 80–85. [Google Scholar] [CrossRef]
- Platts, P.J. Spatial Modelling, Phytogeography and Conservation the Eastern Arc Mountains of Tanzania and Kenya. Ph.D. Thesis, University of York, York, UK, 2012. [Google Scholar]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Terrain_Ruggedness_Index.pdf. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Fabricius, C.; Coetzee, K. Geographic information systems and artificial intelligence for predicting the presence or absence of mountain reedbuck. S. Afr. J. Wildl. Res. 1992, 22, 80–86. [Google Scholar]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldeck, C.A.; Harms, K.E.; Yavitt, J.B.; John, R.; Turner, B.L.; Valencia, R.; Navarrete, H.; Davies, S.J.; Chuyong, G.B.; Kenfack, D.; et al. Soil resources and topography shape local tree community structure in tropical forests. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122532. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S. Revisiting the concept of payments for environmental services. Ecol. Econ. 2015, 117, 234–243. [Google Scholar] [CrossRef]
- Tuanmu, M.N.; Viña, A.; Yang, W.; Chen, X.; Shortridge, A.M.; Liu, J. Effects of payments for ecosystem services on wildlife habitat recovery. Conserv. Biol. 2016, 30, 827–835. [Google Scholar] [CrossRef]
- Chen, H.L.; Lewison, R.L.; An, L.; Tsai, Y.H.; Stow, D.; Shi, L.; Yang, S. Assessing the effects of payments for ecosystem services programs on forest structure and species biodiversity. Biodivers. Conserv. 2020, 29, 2123–2140. [Google Scholar] [CrossRef] [Green Version]
- Falcone, P.M.; Tani, A.; Tartiu, V.E.; Imbriani, C. Towards a sustainable forest-based bioeconomy in Italy: Findings from a SWOT analysis. For. Policy Econ. 2020, 110, 101910. [Google Scholar] [CrossRef]
- Gregg, J.S.; Jürgens, J.; Happel, M.K.; Strøm-Andersen, N.; Tanner, A.N.; Bolwig, S.; Klitkou, A. Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. J. Clean. Prod. 2020, 267, 122093. [Google Scholar] [CrossRef]
Code | Major Soil Group | Descriptions |
---|---|---|
1 | Acrisols | Strongly weathered acid soils, with low base saturation |
2 | Andosols | Black soils of volcanic landscapes, rich in organic matters |
3 | Arenosols | Sandy soils with limited soil development, under scattered (mostly grassy) vegetation to very old plateaus of light forest |
4 | Cambisols | Weakly to moderately developed soil soils occurring from sea level to the highlands and under all kind of vegetation (savanna woodland and forests) |
5 | Chernozems | Black soil rich in organic matter, occurring in flat to undulating plains with forest and tall grass vegetation |
6 | Ferralsols | Deep, strongly weathered, physically stable but chemically depleted |
7 | Fluvisols | Associated with important river plains, periodically flooded areas |
8 | Gleysols | Temporary or permanent wetness near soil surface, support swamp forests or permanent grass cover |
9 | Histosols | Peat and muck soils with incompletely decomposed plant remains |
10 | Leptosols | Shallow soils over hard rock/gravel, at medium to high altitude landscapes, suitable for forestry and nature conservation |
11 | Lixisols | Strongly weathered and leached, finely textured materials support natural savanna or open woodland vegetation |
12 | Luvisols | Common in flat or gently sloping land with unconsolidated alluvial, colluvial, aeolian deposits in cooler environments and young surface |
13 | Nitisols | Deep, red, well-drained tropical soils with a clayey, well defined nut-shaped peds with shiny surface. Found in level to highland under tropical rain forest or savanna vegetation |
14 | Phaeozems | Dark soils, rich in organic matter. Occur on flat to undulating land in a warm to cool (tropical highland). Support natural vegetation with tall grass steppe and or/forest |
15 | Planosols | Clayey alluvial and colluvial deposits and support light forest or grass vegetation |
16 | Regosols | Contain gravelly lateritic materials (murrum) with low suitability for plant growth |
17 | Solonchanks | Occur in seasonally or permanently water logged areas with grasses and/or halophytic herbs |
18 | Solonetz | Associated with flat lands in a hot climate, dry summers, coastal deposit. Contain a high proportional of sodium ions |
19 | Vertisols | Contain sediments with a high proportion of smectite clay, high swelling and shrinking of results in deep cracks during dry season. Climax vegetation is savanna, natural grass and/or woodland |
20 | Water | Areas covered by water bodies |
Variable | Code | Mean | Standard Error | Minimum | Maximum |
---|---|---|---|---|---|
Annual mean temperature (°C) | bio1 | 17.10 | 3.46 | 3.70 | 24.00 |
Isothermality (dimensionless) | bio3 | 6.64 | 0.48 | 6.10 | 8.40 |
Annual precipitation (mm) | bio12 | 1237 | 38 | 503 | 2287 |
Precipitation of warmest quarter (mm) | bio18 | 364 | 12 | 140 | 576 |
Precipitation of driest month (mm) | bio14 | 7 | 0.9 | 0 | 57 |
Terrain ruggedness index (m) | tri | 104.43 | 9.47 | 0.13 | 418.75 |
Elevation (m) | eleva | 1903 | 56 | 698 | 4249 |
Variable | Code | Percent Contribution (%) |
---|---|---|
Annual mean temperature | bio1 | 51.7 |
Terrain ruggedness index | tri | 31.6 |
Elevation | eleva | 5.7 |
Soil type | soils | 5.5 |
Annual precipitation | bio12 | 3.4 |
Precipitation of warmest quarter | bio18 | 0.9 |
Precipitation of driest month | bio14 | 0.8 |
Isothermality | bio3 | 0.5 |
Suitability Class | Species Distribution Area (km2) | |||||
---|---|---|---|---|---|---|
Current | RCP 4.5 | Area Change | RCP 8.5 | Area Change | ||
2050 | Very low | 767,755.74 | 826,010.1 | 58,254.37 | 831,659.80 | 63,904.06 |
Low | 102,181.30 | 64,349.85 | −37,831.46 | 59,628.51 | −42,552.80 | |
Moderate | 32,044.01 | 19,254.13 | −12,789.88 | 19,514.24 | −12,529.77 | |
High | 15,758.05 | 11,585.16 | −4172.88 | 11,224.09 | −4533.96 | |
Very high | 14,586.70 | 11,126.55 | −3460.15 | 10,299.16 | −4287.54 | |
2070 | Very low | 767,755.74 | 829,251.22 | 61,495.48 | 847,873.04 | 80,117.30 |
Low | 102,181.30 | 61,217.40 | −40,963.90 | 50,670.11 | −51,511.19 | |
Moderate | 32,044.01 | 19,591.25 | −12,452.77 | 15,309.70 | −16,734.31 | |
High | 15,758.05 | 11,456.82 | −4301.23 | 9021.71 | −6736.34 | |
Very high | 14,586.70 | 10,809.11− | 3777.58 | 9451.23 | −5135.46 |
Species Distribution Area (km2) | ||||||||
---|---|---|---|---|---|---|---|---|
Scenario | Suitability Class | Eastern Zone | Southern Zone | Northern Zone | Central Zone | Southern Highlands Zone | Western Zone | Lake Zone |
RCP 4.5 (2050) | Very low | 1089.21 | 1216.69 | 12,694.85 | 2972.43 | 11,410.56 | 12,119.02 | 16,740.23 |
Low | −416.69 | −556.15 | −8740.17 | −2262.26 | −5417.79 | −6645.61 | −13,783.20 | |
Moderate | −219.89 | −412.41 | −2170.71 | −404.71 | −2750.82 | −4373.08 | −2457.34 | |
High | −176.26 | −175.40 | −885.57 | −145.46 | −1374.98 | -941.18 | −473.16 | |
Very high | −276.37 | −72.73 | −898.40 | −160.00 | −1866.97 | −159.15 | −26.52 | |
RCP 4.5 (2070) | Very low | 1156.80 | 1082.36 | 14,000.53 | 2985.26 | 10,945.11 | 12,734.21 | 18,578.96 |
Low | −479.15 | −416.69 | −9586.38 | −2332.42 | −5392.98 | −7310.43 | −15,435.41 | |
Moderate | −229.31 | −403.85 | −2176.70 | −396.15 | −2286.22 | −4326.88 | −2632.75 | |
High | −169.41 | −183.10 | −860.75 | −114.65 | −1546.96 | −942.04 | −483.43 | |
Very high | −278.93 | −78.72 | −1376.69 | −142.03 | −1718.94 | −154.87 | −27.38 | |
RCP 8.5 (2050) | Very low | 1333.06 | 1315.09 | 13,487.16 | 3082.80 | 12,644.37 | 13,412.72 | 18,614.89 |
Low | −582.68 | −624.60 | −8825.73 | −2387.18 | −6618.23 | −7879.42 | −15,622.79 | |
Moderate | −250.70 | −390.16 | −2244.29 | −399.58 | −2331.57 | −4409.02 | −2503.55 | |
High | −175.40 | −213.91 | −765.78 | −133.48 | −1827.61 | −954.02 | −462.89 | |
Very high | −324.28 | −86.42 | −1651.35 | −162.57 | −1866.97 | −170.27 | −25.67 | |
RCP 8.5 (2070) | Very low | 1911.46 | 1935.42 | 17,698.52 | 4095.86 | 16,881.41 | 16,414.24 | 21,166.36 |
Low | −748.67 | −975.41 | −11,529.49 | −3080.24 | −7644.12 | −9855.04 | −17,666.87 | |
Moderate | −421.82 | −577.54 | −3021.20 | −521.07 | −3902.49 | −5315.97 | −2973.28 | |
High | −274.65 | −280.64 | −1523.86 | −278.93 | −2831.25 | −1048.14 | −497.12 | |
Very high | −466.31 | −101.82 | −1623.97 | −215.62 | −2503.55 | −195.08 | −29.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giliba, R.A.; Yengoh, G.T. Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in Tanzania. Atmosphere 2020, 11, 988. https://doi.org/10.3390/atmos11090988
Giliba RA, Yengoh GT. Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in Tanzania. Atmosphere. 2020; 11(9):988. https://doi.org/10.3390/atmos11090988
Chicago/Turabian StyleGiliba, Richard A., and Genesis Tambang Yengoh. 2020. "Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in Tanzania" Atmosphere 11, no. 9: 988. https://doi.org/10.3390/atmos11090988
APA StyleGiliba, R. A., & Yengoh, G. T. (2020). Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in Tanzania. Atmosphere, 11(9), 988. https://doi.org/10.3390/atmos11090988