Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Blood Pressure Measurements and Hypertension Definition
2.3. Volatile Organic Compounds Exposure Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IMARC Group, Global TFT LCD Panel Market to Reach US$ 208.6 Billion by 2024. Available online: https://www.imarcgroup.com/global-tft-lcd-market-worth-us-193-billion (accessed on 29 March 2020).
- Wu, C.H.; Feng, C.T.; Lo, Y.S.; Lin, T.Y.; Lo, J.G. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Chemosphere 2004, 56, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chang, F.T. Optimizing operating parameters of a honeycomb zeolite rotor concentrator for processing TFT-LCD volatile organic compounds with competitive adsorption characteristics. J. Hazard Mater. 2009, 164, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Huang, K.H.; Liu, C.S.; Shie, R.H.; Chao, K.P.; Hsu, W.H.; Bao, B.Y. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers. J. Hazard Mater. 2010, 178, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Tobe, S.W.; Soberman, H.; Kiss, A.; Perkins, N.; Baker, B. The effect of alcohol and gender on ambulatory blood pressure: Results from the Baseline Double Exposure study. Am. J. Hypertens. 2006, 19, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Eby, J.M.; Majetschak, M. Effects of ethanol and ethanol metabolites on intrinsic function of mesenteric resistance arteries. PLoS ONE 2019, 14, e0214336. [Google Scholar] [CrossRef] [Green Version]
- Thompson-Torgerson, C.S.; Champion, H.C.; Santhanam, L.; Harris, Z.L.; Shoukas, A.A. Cyclohexanone contamination from extracorporeal circuits impairs cardiovascular function. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1926–H1932. [Google Scholar] [CrossRef] [Green Version]
- Morck, H.I.; Winkel, P.; Gyntelberg, F. Health effects of toluene exposure. Dan. Med. Bull. 1988, 35, 196–200. [Google Scholar]
- Gericke, C.; Hanke, B.; Beckmann, G.; Baltes, M.M.; Kuhl, K.P.; Neubert, D. Multicenter field trial on possible health effects of toluene. III. Evaluation of effects after long-term exposure. Toxicology 2001, 168, 185–209. [Google Scholar] [CrossRef]
- Su, S.B.; Wang, J.N.; Lu, C.W.; Guo, H.R. Reducing urinary tract infections among female clean room workers. J. Womens Health (Larchmt) 2006, 15, 870–876. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Compendium Method TO-15: Determination of Volatile Organic Omcpounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), 2nd ed.; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- Chang, T.Y.; Lin, S.J.; Shie, R.H.; Tsai, S.W.; Hsu, H.T.; Tsai, C.T.; Kuo, H.W.; Chiang, C.F.; Lai, J.S. Characterization of volatile organic compounds in the vicinity of an optoelectronics industrial park in Taiwan. J. Air Waste Manag. Assoc. 2010, 60, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.Y.; Liu, C.L.; Huang, K.H.; Kuo, H.W. Indoor and Outdoor Exposure to Volatile Organic Compounds and Health Risk Assessment in Residents Living near an Optoelectronics Industrial Park. Atmosphere 2019, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B. Fundamentals of Biostatistics, 6th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2006. [Google Scholar]
- American Conference of Governmental Industrial Hygienists, Adopted Threshold limit values. In Proceedings of the 2019 Threshold Limit Values (TLV) and Biological Exposure Indices ACGIH, Cinninnati, OH, USA, 5 March 2019; pp. 11–63.
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Copenhagen, Denmark, 2010. [Google Scholar]
- Taiwan Environmental Protection Administration (TEPA). Indoor Air Quality Standard; Taiwan Environmental Protection Administration: Taipei, Taiwan, 2012. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, 2nd ed.; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- Chang, T.Y.; Wang, V.S.; Hwang, B.F.; Yen, H.Y.; Lai, J.S.; Liu, C.S.; Lin, S.Y. Effects of co-exposure to noise and mixture of organic solvents on blood pressure. J. Occup. Health 2009, 51, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, N.; Graham, S. Observations on the Action of Acetone. Arch. Dis. Child. 1927, 2, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druilhet, R.E.; Overturf, M.L.; Hinshaw, R.A.; Kirkendall, W.M. Evidence against acetone-soluble renin inhibitors in normal human plasma. Hypertension 1979, 1, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checkoway, H.; Pearce, N.; Kriebel, D. Precision and validity in study design. In Research Method in Occupational Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 2004; pp. 83–121. [Google Scholar]
- Stern, M.; Broja, M.; Sansone, R.; Grone, M.; Skene, S.S.; Liebmann, J.; Suschek, C.V.; Born, M.; Kelm, M.; Heiss, C. Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Eur. J. Prev. Cardiol. 2018, 25, 1875–1883. [Google Scholar] [CrossRef]
- Zhang, X.; Wargocki, P.; Lian, Z. Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors. Indoor Air 2017, 27, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.Y.; Liu, C.S.; Young, L.H.; Wang, V.S.; Jian, S.E.; Bao, B.Y. Noise frequency components and the prevalence of hypertension in workers. Sci. Total Environ. 2012, 416, 89–96. [Google Scholar] [CrossRef]
- Chang, T.Y.; Hwang, B.F.; Liu, C.S.; Chen, R.Y.; Wang, V.S.; Bao, B.Y.; Lai, J.S. Occupational noise exposure and incident hypertension in men: A prospective cohort study. Am. J. Epidemiol. 2013, 177, 818–825. [Google Scholar] [CrossRef]
- Liu, C.S.; Young, L.H.; Yu, T.Y.; Bao, B.Y.; Chang, T.Y. Occupational Noise Frequencies and the Incidence of Hypertension in a Retrospective Cohort Study. Am. J. Epidemiol. 2016, 184, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Gamage, A.U.; Seneviratne Rde, A. Perceived Job Stress and Presence of Hypertension Among Administrative Officers in Sri Lanka. Asia Pac J. Public Health 2016, 28 (Suppl. 1), 41S–52S. [Google Scholar] [CrossRef] [Green Version]
- Clays, E.; Leynen, F.; De Bacquer, D.; Kornitzer, M.; Kittel, F.; Karasek, R.; De Backer, G. High job strain and ambulatory blood pressure in middle-aged men and women from the Belgian job stress study. J. Occup. Environ. Med. 2007, 49, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Liu, C.S.; Hwang, B.F.; Hsieh, H.H.; Bao, B.Y.; Chen, C.J.; Wang, V.S.; Lai, J.S. Acute effects of noise exposure on 24-h ambulatory blood pressure in hypertensive adults. J. Hypertens. 2015, 33, 507–514. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Study Group | Total Subjects (n = 155) | p-Value | ||
---|---|---|---|---|---|
Array (n = 66) | Cell (n = 67) | Module (n = 22) | |||
Age (years), Mean±SD | 27.2 ± 3.2 b | 28.4 ± 2.9 c | 26.5 ± 2.7 | 27.6 ± 3.0 | 0.008 a |
Employment duration (years), Mean±SD | 3.3 ± 2.3 | 3.0 ± 1.4 | 4.0 ± 2.1 | 3.3 ± 2.0 | 0.524 a |
Body Mass Index (kg m−2), Mean±SD | 22.9 ± 3.1 | 23.4 ± 3.4 | 21.5 ± 2.3 | 22.9 ± 3.2 | 0.063 a |
Total cholesterol (mg dL−1), Mean±SD | 192.9 ± 33.5 | 196.2 ± 31.7 | 186.4 ± 21.1 | 193.6 ± 31.4 | 0.295 a |
Triglyceride (mg dL−1), Mean±SD | 102.2 ± 95.3 | 107.2 ± 65.4 | 74.6 ± 33.9 | 101.0 ± 77.5 | 0.093 a |
HDL cholesterol (mg dL−1), Mean±SD | 48.1 ± 13.1 | 46.1 ± 12.0 c | 53.4 ± 10.4 | 47.9 ± 12.5 | 0.045 a |
LDL cholesterol (mg dL−1), Mean±SD | 127.1 ± 31.2 | 129.7 ± 31.0 | 115.2 ± 20.6 | 126.7 ± 30.1 | 0.206 a |
Gender, male (%) | 46 (69.7) f | 56 (83.6) f | 3 (13.6) | 105 (67.7) | <0.001 d |
Smoker, yes (%) | 8 (12.1) | 12 (17.9) | 1 (4.6) | 21 (13.6) | 0.256 d |
Alcohol drinking, yes (%) | 1 (1.5) | 4 (6.0) | 0 (0.0) | 5 (3.2) | 0.396 e |
Tea consumption, yes (%) | 26 (39.4) | 28 (41.8) | 8 (36.4) | 62 (40.0) | 0.895 d |
Coffee consumption, yes (%) | 21 (31.8) | 21 (31.3) | 6 (27.3) | 48 (31.0) | 0.920 d |
Regular exercise, yes (%) | 27 (40.9) f | 30 (44.8) f | 2 (9.1) | 59 (38.1) | 0.009 d |
Family history of hypertension, yes (%) | 24 (36.4) | 14 (20.9) | 6 (27.3) | 44 (28.4) | 0.140 d |
Chemical | CASRN | Array | Cell | Module | Total Subjects Mean ± SD (ppb) | p-Value |
---|---|---|---|---|---|---|
Mean ± SD (ppb) | Mean ± SD (ppb) | Mean ± SD (ppb) | ||||
Ethanol | 64-17-5 | 667.1 ± 370.0 b,c | 2624.1 ± 2065.5 b | 3188.1 ± 739.1 | 1870.8 ± 1754.0 | <0.001 a |
Acetone | 67-63-0 | 587.6 ± 42.9 b,c | 339.3 ± 175.7 b | 2064.4 ± 152.5 | 689.9 ± 587.4 | <0.001 a |
Isopropyl alcohol | 67-64-1 | 382.5 ± 123.7 b,c | 32.5 ± 82.4 b | 1.7 ± 0.6 | 177.1 ± 202.3 | <0.001 a |
PGMEA | 108-65-6 | 204.2 ± 53.9 b,c | 25.7 ± 33.3 b | 0.9 ± 0.1 | 98.2 ± 100.8 | <0.001 a |
Cyclohexanone | 108-94-1 | 7.5 ± 1.0 b | 7.5 ± 4.8 b | 16.8 ± 8.0 | 8.8 ± 5.4 | <0.001 a |
Toluene | 108-88-3 | 4.7 ± 1.1 b,c | 5.9 ± 3.3 b | 18.6 ± 4.8 | 7.2 ± 5.5 | <0.001 a |
m/p-Xylene | 108-38-3/106-42-3 | 6.6 ± 3.3 b,c | 3.7 ± 1.5 b | 6.5 ± 0.9 | 5.3 ± 2.7 | <0.001 a |
o-Xylene | 95-47-6 | 4.3 ± 0.5 b,c | 1.6 ± 0.9 b | 3.1 ± 0.5 | 3.0 ± 1.4 | <0.001 a |
1,2,4-Trimethylbenzene | 95-63-6 | 5.0 ± 0.6 b,c | 0.6 ± 0.9 b | 1.8 ± 0.1 | 2.6 ± 2.2 | <0.001 a |
Hexane | 110-54-3 | 2.2 ± 1.6 | 1.8 ± 1.4 | 2.4 ± 1.9 | 2.1 ± 1.5 | 0.803 c |
Benzaldehyde | 100-52-7 | 2.0 ± 0.4 b,c | 0.8 ± 0.2 b | 0.1 ± 0.2 | 1.2 ± 0.8 | <0.001 a |
1-Ethyl-3-methylbenzene | 620-14-4 | 1.4 ± 0.2 b,c | 0.1 ± 0.3 b | 0.7 ± 0.1 | 0.7 ± 0.6 | <0.001 a |
Group | Number | Systolic Blood Pressure | Diastolic Blood Pressure | Prevalence of Hypertension | Crude OR (95% CI) |
---|---|---|---|---|---|
Mean ± SD (mmHg) | Mean ± SD (mmHg) | ||||
Array | 66 | 118.3 ± 14.5 b | 74.1 ± 10.3 | 8 (12.1) | 1.38 (0.27–7.05) |
Cell | 67 | 124.3 ± 15.4 | 76.0 ± 11.2 | 13 (19.4) | 2.41 (0.50–11.63) |
Module | 22 | 122.2 ± 14.6 | 75.9 ± 11.6 | 2 (9.1) | 1.0 |
p-value | 0.093 a | 0.579 a | 0.356 c |
Concentration (ppb) | SBP (mmHg) | DBP (mmHg) | ||
---|---|---|---|---|
Coefficients | p-Value a | Coefficients | p-Value a | |
Ethanol | 0.031 | 0.703 | 0.070 | 0.388 |
Acetone | −0.115 | 0.153 | −0.050 | 0.540 |
Isopropyl alcohol | −0.110 | 0.171 | −0.089 | 0.272 |
PGMEA | −0.061 | 0.453 | −0.050 | 0.535 |
Cyclohexanone | 0.095 | 0.238 | 0.093 | 0.250 |
Toluene | 0.063 | 0.439 | 0.090 | 0.265 |
m/p-Xylene | 0.041 | 0.613 | −0.002 | 0.977 |
o-Xylene | −0.146 | 0.070 | −0.050 | 0.536 |
1,2,4-Trimethylbenzene | −0.140 | 0.083 | −0.054 | 0.508 |
Hexane | −0.084 | 0.296 | −0.080 | 0.320 |
Benzaldehyde | −0.142 | 0.077 | −0.080 | 0.324 |
1-Ethyl-3-methylbenzene | 0.131 | 0.105 | −0.059 | 0.463 |
Variable | Model 1 a | Model 2 b | Model 3 c | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Group: Array vs. module | 1.38 (0.27–7.05) | 0.699 | 0.63 (0.10–4.14) | 0.623 | 0.65 (0.10–4.31) | 0.655 |
Cell vs. module | 2.41 (0.50–11.63) | 0.274 | 0.96 (0.15–6.32) | 0.967 | 0.99 (0.15–6.52) | 0.987 |
Gender, male vs. female | 3.69 (1.04–13.06) | 0.043 | 3.57 (0.80–15.86) | 0.095 | 3.45 (0.70–16.94) | 0.127 |
Age (years), ≥30 vs. <30 | 2.07 (0.77–5.61) | 0.151 | 1.19 (0.40–3.50) | 0.755 | ||
BMI (kg m−2), ≥27 vs. <27 | 1.16 (0.24–5.68) | 0.853 | ||||
Total cholesterol (mg dL−1), ≥200 vs. <200 | 2.60 (1.06–6.40) | 0.038 | 2.43 (0.97–6.07) | 0.058 | 2.38 (0.93–6.10) | 0.070 |
Triglyceride (mg dL−1), ≥150 vs. <150 | 2.60 (0.95–7.16) | 0.064 | ||||
HDL cholesterol (mg dL−1), <40 vs. ≥150 | 1.39 (0.57–3.42) | 0.471 | 1.08 (0.42–2.82) | 0.869 | ||
LDL cholesterol (mg dL−1), ≥130 vs. <130 | 2.04 (0.84–4.98) | 0.118 | ||||
Smoker, yes vs. no | 2.75 (0.94–8.06) | 0.065 | ||||
Alcohol drinking, yes vs. no | 1.46 (0.16–13.63) | 0.742 | ||||
Tea consumption, yes vs. no | 1.18 (0.48–2.90) | 0.712 | ||||
Coffee consumption, yes vs. no | 1.90 (0.77–4.71) | 0.164 | ||||
Regular exercise, yes vs. no | 1.30 (0.53–3.20) | 0.563 | 0.89 (0.33–2.38) | 0.811 | ||
Family history of hypertension, yes vs. no | 1.12 (0.43–2.95) | 0.814 |
Variable | Model 1 a | Model 2 a | Model 3 b | |||
---|---|---|---|---|---|---|
Increase in SBP (mmHg) (95% CI) | p-Value | Increase in DBP (mmHg) (95% CI) | p-Value | OR (95% CI) | p-Value | |
Total level of ECT (ppb), ≥2500 vs. <2500 | 5.95 (0.20–11.71) | 0.043 | 2.74 (−1.45–6.92) | 0.198 | 1.25 (0.39–3.98) | 0.710 |
Gender, male vs. female | 10.65 (4.70–16.60) | <0.001 | 4.78 (0.45–9.10) | 0.031 | 3.54 (0.82–15.27) | 0.090 |
Age (years), ≥30 vs. <30 | −2.00 (−8.19–4.19) | 0.525 | 1.94 (−2.57–6.44) | 0.397 | 1.20 (0.40–3.57) | 0.741 |
Total cholesterol (mg dL−1), ≥200 vs. <200 | 4.40 (−0.48–9.28) | 0.077 | 3.91 (0.36–7.46) | 0.031 | 2.38 (0.93–6.13) | 0.071 |
HDL cholesterol (mg dL−1), <40 vs. ≥150 | −1.81 (−6.95–3.33) | 0.488 | 0.71 (−3.03–4.45) | 0.709 | 1.06 (0.40–2.79) | 0.909 |
Regular exercise, yes vs. no | −0.50 (−5.60–4.61) | 0.848 | −1.38 (−5.09–2.33) | 0.464 | 0.89 (0.34–2.35) | 0.811 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-Y.; Huang, K.-H.; Liu, C.-S.; Bao, B.-Y. Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers. Atmosphere 2020, 11, 718. https://doi.org/10.3390/atmos11070718
Chang T-Y, Huang K-H, Liu C-S, Bao B-Y. Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers. Atmosphere. 2020; 11(7):718. https://doi.org/10.3390/atmos11070718
Chicago/Turabian StyleChang, Ta-Yuan, Kuei-Hung Huang, Chiu-Shong Liu, and Bo-Ying Bao. 2020. "Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers" Atmosphere 11, no. 7: 718. https://doi.org/10.3390/atmos11070718
APA StyleChang, T. -Y., Huang, K. -H., Liu, C. -S., & Bao, B. -Y. (2020). Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers. Atmosphere, 11(7), 718. https://doi.org/10.3390/atmos11070718