Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = Southern Patagonia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3828 KiB  
Article
Hydroclimatic Variability of the Grey River Basin (Chilean Patagonia): Trends and Relationship with Large-Scale Climatic Phenomena
by Patricio Fuentes-Aguilera, Lien Rodríguez-López, Luc Bourrel and Frederic Frappart
Water 2025, 17(13), 1895; https://doi.org/10.3390/w17131895 - 26 Jun 2025
Viewed by 529
Abstract
This study investigated the influence of long-term climatic phenomena on the hydroclimatic dynamics of the Grey River Basin in Chilean Patagonia. By analyzing hydroclimatological datasets from the last four decades (1980 to 2020), including precipitation, temperature, wind speed, potential evapotranspiration, and streamflow, we [...] Read more.
This study investigated the influence of long-term climatic phenomena on the hydroclimatic dynamics of the Grey River Basin in Chilean Patagonia. By analyzing hydroclimatological datasets from the last four decades (1980 to 2020), including precipitation, temperature, wind speed, potential evapotranspiration, and streamflow, we identified key trends and correlations with three large-scale climate indices: the Antarctic Oscillation (AAO), El Niño—Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). Statistical methods such as the Mann–Kendall test, Sen’s slope, PCA, and wavelet coherence were applied. The results indicate a significant upward trend in streamflow, with Sen’s slope of 0.710 m3/s/year (p-value = 0.020), particularly since 2002, while other variables showed limited or no significant trends. AAO exhibited the strongest correlations with streamflow and wind speed, while ENSO 3.4 was the most influential ENSO index, especially during the two extreme El Niño events in 1982, 1997, and 2014. PDO showed weaker relationships overall. Wavelet analysis revealed coherent periodicities at 1- and 2-year frequencies between AAO and flow (wavelet coherence = 0.44), and at 2- to 4-year intervals between ENSO and precipitation (wavelet coherence = 0.63). These findings highlight the sensitivity of the Grey River basin to climatic variability and reinforce the need for integrated water resource management in the face of ongoing climate change. Full article
Show Figures

Figure 1

76 pages, 32162 KiB  
Article
Heterobranch Sea Slugs s.l. (Mollusca, Gastropoda) from the Southern Ocean: Biodiversity and Taxonomy
by Manuel Ballesteros, Alex Hopkins, Miquel Salicrú and Matt J. Nimbs
Diversity 2025, 17(5), 330; https://doi.org/10.3390/d17050330 - 3 May 2025
Viewed by 868
Abstract
The Southern Ocean, located between Antarctica and the southern tips of South America, Africa and Australia, encompasses an immense area across the southern Atlantic, Pacific and Indian oceans with no clearly defined limits. For the purposes of studying marine heterobranch sea slugs, we [...] Read more.
The Southern Ocean, located between Antarctica and the southern tips of South America, Africa and Australia, encompasses an immense area across the southern Atlantic, Pacific and Indian oceans with no clearly defined limits. For the purposes of studying marine heterobranch sea slugs, we consider the Southern Ocean to include all ocean areas located south of latitude 41° S. South of this latitude, we consider different areas and zones: the area of South America (the Patagonia/Magellanic area), the island of Tasmania, the southern island of New Zealand, the Subantarctic area (the Falkland Islands, South Georgia Island, the South Orkney Islands, South Sandwich Island, Bouvet Island, the islands of Crozet and Prince Edward, the Kerguelen Islands, and Macquarie Island) and the area of Antarctica, in which we consider four zones (Weddell Sea, West Antarctica, Ross Sea and East Antarctica). Reviewing all available references and unpublished data from the authors, in total, 394 species of heterobranch sea slugs have been recorded to date in the Southern Ocean > 41° S, with Nudibranchia standing out with 209 species and Cephalaspidea with 90 species. The marine heterobranchs of Tasmania (154 species) and southern New Zealand (120 species) have been well studied. Sea slug fauna of the Antarctic and Subantarctic regions have been the subject of several partial studies; however, there are still many gaps in knowledge across both areas. Eighty-nine different species of sea slug have been recorded so far in strictly Antarctic waters (West Antarctica, 45 species; Weddell Sea, 48 species; Ross Sea, 51 species; East Antarctica, 42 species), while in the various Subantarctic regions, there are 93 species (36 species from South Georgia, 17 species from the South Orkneys, 12 species from south Sandwich, 6 species from Bouvet, 10 species from Prince Edward and Crozet Islands, 15 species from Kerguelen, 3 species from Macquarie Island, 29 species from the Falkland Islands and 71 species from the coast of South America). In the taxonomic section, for each of the species, the location and the authors of the records are indicated, and for many of the species, interesting biological, taxonomic or biogeographic observations are also provided. The importance of sampling in underexplored areas is discussed, as well as greater-depth sampling for a better understanding of the sea slugs of the Southern Ocean. Full article
Show Figures

Figure 1

18 pages, 5560 KiB  
Article
Large-Scale Coastal Marine Wildlife Monitoring with Aerial Imagery
by Octavio Ascagorta, María Débora Pollicelli, Francisco Ramiro Iaconis, Elena Eder, Mathías Vázquez-Sano and Claudio Delrieux
J. Imaging 2025, 11(4), 94; https://doi.org/10.3390/jimaging11040094 - 24 Mar 2025
Viewed by 1059
Abstract
Monitoring coastal marine wildlife is crucial for biodiversity conservation, environmental management, and sustainable utilization of tourism-related natural assets. Conducting in situ censuses and population studies in extensive and remote marine habitats often faces logistical constraints, necessitating the adoption of advanced technologies to enhance [...] Read more.
Monitoring coastal marine wildlife is crucial for biodiversity conservation, environmental management, and sustainable utilization of tourism-related natural assets. Conducting in situ censuses and population studies in extensive and remote marine habitats often faces logistical constraints, necessitating the adoption of advanced technologies to enhance the efficiency and accuracy of monitoring efforts. This study investigates the utilization of aerial imagery and deep learning methodologies for the automated detection, classification, and enumeration of marine-coastal species. A comprehensive dataset of high-resolution images, captured by drones and aircrafts over southern elephant seal (Mirounga leonina) and South American sea lion (Otaria flavescens) colonies in the Valdés Peninsula, Patagonia, Argentina, was curated and annotated. Using this annotated dataset, a deep learning framework was developed and trained to identify and classify individual animals. The resulting model may help produce automated, accurate population metrics that support the analysis of ecological dynamics. The resulting model achieved F1 scores of between 0.7 and 0.9, depending on the type of individual. Among its contributions, this methodology provided essential insights into the impacts of emergent threats, such as the outbreak of the highly pathogenic avian influenza virus H5N1 during the 2023 austral spring season, which caused significant mortality in these species. Full article
Show Figures

Figure 1

26 pages, 7065 KiB  
Article
Water Surface Temperature Dynamics of the Three Largest Ice-Contact Lakes in the Patagonia Icefield over the Last 20 Years
by Shaochun Zhao, Hongyan Sun, Jie Cheng and Guoqing Zhang
Water 2025, 17(3), 385; https://doi.org/10.3390/w17030385 - 30 Jan 2025
Viewed by 943
Abstract
The Patagonia Icefield, the largest ice mass in the Southern Hemisphere outside Antarctica, has experienced significant growth and expansion of ice-contact lakes in recent decades, with lake surface water temperature (LSWT) being one of the key influencing factors. LSWT affects glacier melting at [...] Read more.
The Patagonia Icefield, the largest ice mass in the Southern Hemisphere outside Antarctica, has experienced significant growth and expansion of ice-contact lakes in recent decades, with lake surface water temperature (LSWT) being one of the key influencing factors. LSWT affects glacier melting at the waterline and accelerates glacier mass loss. However, the observations of ice-contact LSWT are often limited to short-term, site-based field measurements, which hinders long-term, whole-lake monitoring. This study examines LSWT for the three largest ice-contact lakes in the Patagonia Icefield—Lake Argentino, Lake Viedma, and Lake O’Higgins, each exceeding 1000 km2—and the three largest nearby non-ice-contact lakes for comparison using MODIS data between 2002 and 2022. In 2022, the mean LSWTs for Lake Argentino, Lake Viedma, and Lake O’Higgins were 7.2, 7.0, and 6.4 °C, respectively. In summer, ice-contact lakes exhibited wider LSWT ranges and more pronounced cooling near glacier termini and warming farther away compared to other seasons, demonstrating glacier melt cooling and its seasonal variability. Over the past 20 years, both Lake Viedma and Lake O’Higgins showed a warming rate of +0.20 °C dec−1, p > 0.1, with slower warming near the glacier, reflecting glacier contact suppression on the LSWT trend. Conversely, Lake Argentino displayed a significant warming rate of +0.43 °C dec−1 (p < 0.05), with faster rates near the glacier terminus, possibly linked to a prolonged and large (>64 km2) iceberg accumulation event from March 2010 to October 2011 in Glacier Upsala’s fjord. Iceberg mapping shows that larger events caused more pronounced short-term (24 days) LSWT cooling in Lake Argentino’s ice-proximal region. This study highlights the role of glacier–lake interactions including calving events in regulating ice-contact lake water temperature. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

39 pages, 29694 KiB  
Article
Jurassic Osmundaceous Landscapes in Patagonia: Exploring the Concept of Ecological Stasis in the Deseado Massif, Argentina
by Juan L. García Massini, Giovanni C. Nunes, Agustina Yañez, Ignacio H. Escapa and Diego Guido
Plants 2025, 14(2), 165; https://doi.org/10.3390/plants14020165 - 8 Jan 2025
Cited by 1 | Viewed by 3452
Abstract
Herein, we report the presence of a plant paleocommunity, dominated by ferns of the family Osmundaceae, structurally preserved from the only known Mesozoic, fossiliferous geothermal deposits, from the La Matilde Formation (Middle-Upper Jurassic) in the Deseado Massif of Southern Patagonia, Argentina. A total [...] Read more.
Herein, we report the presence of a plant paleocommunity, dominated by ferns of the family Osmundaceae, structurally preserved from the only known Mesozoic, fossiliferous geothermal deposits, from the La Matilde Formation (Middle-Upper Jurassic) in the Deseado Massif of Southern Patagonia, Argentina. A total of 13 siliceous chert blocks sampled in an area of approximately 250 m2, preserving a monotypic assemblage dominated by Osmundaceae embedded within its original swampy substrate, are documented. Additional Osmundaceae and fewer ferns and conifers are present in the stratigraphically continuous, adjacent chert levels. This association is comparable to those dominated by Osmundaceae in modern swampy settings, such as in high-altitude lagoons in the Paraná Forest in Northeastern Argentina. In addition, a diverse community of mutualistic, parasitic, and saprotrophic microorganisms associated with the ferns and conifers in the assemblage is present. These compositional, paleoenvironmental, and trophic characteristics of the Jurassic Osmundaceae suggest a possible case of ecological stasis, where Osmundaceae-dominated plant communities apparently persisted in swamps of comparable structures, functions, and physical characteristics for over 150 million years. This suggests that Osmundaceae formed similar communities in compatible settings in the Jurassic, becoming preserved in analogous configurations. Full article
(This article belongs to the Special Issue Diversity and Evolution in Lycophytes and Ferns)
Show Figures

Figure 1

13 pages, 3801 KiB  
Article
Stand Characteristics, Leaf Traits and Growth of Threatened Conifer Pilgerodendron uviferum (Cupressaceae) in Southern Patagonia, Argentina
by Pablo L. Peri, Hector Bahamonde, Santiago Toledo and Guillermo Martínez Pastur
Sustainability 2024, 16(20), 9026; https://doi.org/10.3390/su16209026 - 18 Oct 2024
Viewed by 1456
Abstract
Pilgerodendron uviferum is an endemic Cupressaceae of Patagonia (Argentina) that is restricted to a small group of individual trees, growing in isolated populations (relicts) along its distribution. The main objective was to evaluate the habitat, forest structure, leaf traits, leaf nutrient reabsorption and [...] Read more.
Pilgerodendron uviferum is an endemic Cupressaceae of Patagonia (Argentina) that is restricted to a small group of individual trees, growing in isolated populations (relicts) along its distribution. The main objective was to evaluate the habitat, forest structure, leaf traits, leaf nutrient reabsorption and growth of four relicts (area between 0.3 and 0.86 ha) in the Santa Cruz province (Argentina) to improve the available information for forest conservation purposes. Principal components analysis was conducted to determine the separation between relict populations based on their ecological characteristics (individual and habitat levels). We found contrasting environmental and forest structure conditions among the four studied relicts. For example, two relicts associated with Nothofagus antarctica showed higher values of P. uviferum tree density, DBH and dominant height at the stand level. Alongside that, these relicts presented a higher sapling density (1950–3167 ind ha−1) and understory plant diversity compared to pure P. uviferum relicts growing near the ecotone with the steppe grassland. Specific leaf area, carbon and nutrient concentrations in P. univerum leaves varied depending on the relict conditions and tree age of the individuals. The mean nutrient resorption efficiency varied according to relicts and particular nutrients, ranging from 18.1% to 49.5% for Ca and P, respectively. The diameter growth of the dominant P. univerum trees ranged from 0.33 to 0.46 mm yr−1, indicating that the species follows a stress-tolerant strategy. The information of this work may assist in the conservation of marginal P. uviferum forest communities spatially disconnected with continuous forests, growing in relicts. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 12135 KiB  
Article
Southern South American Long-Distance Pollen Dispersal and Its Relationship with Atmospheric Circulation
by Claudio F. Pérez, Ana G. Ulke and María I. Gassmann
Aerobiology 2024, 2(4), 85-104; https://doi.org/10.3390/aerobiology2040007 - 12 Oct 2024
Viewed by 1436
Abstract
This paper addresses the study of synoptic-scale meteorological conditions that favor long-range pollen transport in southern South America combining airborne pollen counts, modeled three-dimensional backward trajectories, and synoptic and surface meteorological data. Alnus pollen transport trajectories indicate origins predominantly in montane forests of [...] Read more.
This paper addresses the study of synoptic-scale meteorological conditions that favor long-range pollen transport in southern South America combining airborne pollen counts, modeled three-dimensional backward trajectories, and synoptic and surface meteorological data. Alnus pollen transport trajectories indicate origins predominantly in montane forests of the Yungas between 1500 and 2800 m altitude. The South American Low-Level Jet is the main meteorological feature that explains 64% of the detected pollen arrival at the target site. Podocarpus and Nothofagus pollen instead are linked primarily to the widespread Subantartic forests in southern Patagonia. Their transport patterns are consistent with previous studies, which show an association with synoptic patterns related to cold front passages carrying pollen in the free atmosphere (27% for Nothofagus and 25% for Podocarpus). These results show the significance of understanding long-distance pollen transport for disciplines such as climate change reconstruction and agriculture, emphasizing the need for further research to refine atmospheric circulation models and refine interpretations of past vegetation and climate dynamics. Full article
Show Figures

Graphical abstract

8 pages, 1858 KiB  
Communication
An Audacious Maneuver: First Record of Leopardus guigna in the Marine Environment
by Walter Sielfeld, Jonathan A. Guzmán, Arturo Clark and Juan Carlos Cubillos
Animals 2024, 14(19), 2879; https://doi.org/10.3390/ani14192879 - 6 Oct 2024
Viewed by 1131
Abstract
The Güiña (Leopardus guigna), the smallest Neotropical feline, inhabits central and southern Chile and western Argentina. This communication reports the first documented instance of a güiña swimming in a marine environment, observed in the Refugio Channel, which separates Refugio Island from [...] Read more.
The Güiña (Leopardus guigna), the smallest Neotropical feline, inhabits central and southern Chile and western Argentina. This communication reports the first documented instance of a güiña swimming in a marine environment, observed in the Refugio Channel, which separates Refugio Island from the mainland in Northern Patagonia, Chile. In April 2023, a local resident recorded video footage of a güiña swimming near the eastern shore of the channel, emerging from the water, shaking off, and climbing a tree to groom itself. This observation suggests that the güiña might use the seacoast when searching for food, particularly during periods of low terrestrial prey availability during the winter. The ability of the güiña to adapt to such environments underscores the species’ ecological flexibility, previously undocumented in this context, and highlights the need for integrating marine resources into the species’ conservation strategies. The video’s quality is limited due to the simplicity of the recording device, but it provides crucial visual evidence of this behavior. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

10 pages, 4541 KiB  
Article
Deciphering the Hearts: Geometric Morphometrics Reveals Shape Variation in Abatus Sea Urchins across Subantarctic and Antarctic Seas
by Fernando Moya, Jordan Hernández, Manuel J. Suazo, Thomas Saucède, Paul Brickle, Elie Poulin and Hugo A. Benítez
Animals 2024, 14(16), 2376; https://doi.org/10.3390/ani14162376 - 16 Aug 2024
Viewed by 1218
Abstract
Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and [...] Read more.
Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and A. agassizii in Tierra del Fuego and South Shetlands. The systematic of Abatus, based on morphological characters and incomplete phylogenies, is complex and largely unresolved. This study evaluates the shape variation among these species using geometric morphometrics analysis (GM). For this, 72 individuals from four locations; South Shetlands, Kerguelen, Patagonia, and Falklands/Malvinas were photographed, and 37 landmarks were digitized. To evaluate the shape differences among species, a principal component analysis and a Procrustes ANOVA were performed. Our results showed a marked difference between the Falklands/Malvinas and the other localities, characterized by a narrower and more elongated shape and a significant influence of location in shape but not sex. Additionally, the effect of allometry was evaluated using a permutation test and a regression between shape and size, showing significant shape changes during growth in all groups. The possibility that the Falklands/Malvinas group shows phenotypic plasticity or represents a distinct evolutionary unit is discussed. Finally, GM proved to be a powerful tool to differentiate these species, highlighting its utility in systematic studies. Full article
Show Figures

Figure 1

18 pages, 4367 KiB  
Article
Quantifying Blowdown Disturbance in Overstory Retention Patches in Managed Nothofagus pumilio Forests with Variable Retention Harvesting
by Guillermo Martínez Pastur, Julián Rodríguez-Souilla, Lucía Bottan, Santiago Favoretti and Juan M. Cellini
Forests 2024, 15(8), 1432; https://doi.org/10.3390/f15081432 - 14 Aug 2024
Cited by 1 | Viewed by 1036
Abstract
The natural resilience of the forests to face impacts of blowdown damages was affected by harvesting operations. Variable retention harvesting (VRH) increases forest structure heterogeneity in managed stands and decreases blowdown damages. The objective of this study was to characterize blowdown in Nothofagus [...] Read more.
The natural resilience of the forests to face impacts of blowdown damages was affected by harvesting operations. Variable retention harvesting (VRH) increases forest structure heterogeneity in managed stands and decreases blowdown damages. The objective of this study was to characterize blowdown in Nothofagus pumilio forests managed with VRH in Southern Patagonia (Argentina). We analyzed long-term plots and one area affected by a windstorm after harvesting (exposure to winds and influence of retention patches) using univariate analyses. We found a differential impact in retention patches compared to dispersed retention after a windstorm considering aspect and distance to edge (e.g., blowdown trees: F = 6.64, p < 0.001). The aspect in retention patches presented few structural differences before the windstorm (e.g., tree diameter: F = 3.92, p = 0.014) but was not greatly influenced by the received damage after the windstorm. In long-term plots, we found that aspect and location in patches (distance to edge) determined the tree stability. We also found differences in wind damage considering retention level and design (e.g., aggregates and dispersed retention vs. aggregates and clear-cuts). We conclude that VRH increased the heterogeneity in harvested areas, where retention patches presented greater resilience in confronting extreme climate events and decreased recurrent wind exposure impacts in the long term. We found the marginal influence of aspect in the retention patches despite dominant winds and damages received by remnant trees during harvesting. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

13 pages, 20131 KiB  
Communication
Satellite-Derived Variability of Sea Surface Salinity and Geostrophic Currents off Western Patagonia
by Gonzalo S. Saldías, Pedro A. Figueroa, David Carrasco, Diego A. Narváez, Iván Pérez-Santos and Carlos Lara
Remote Sens. 2024, 16(9), 1482; https://doi.org/10.3390/rs16091482 - 23 Apr 2024
Cited by 3 | Viewed by 1836
Abstract
The coastal ocean off western Patagonia is one of the main coastal regions with high freshwater inputs from rivers, rain, and glaciers in the Southern Hemisphere. This study conducts an analysis of the seasonal and interannual variations in sea surface salinity and meridional [...] Read more.
The coastal ocean off western Patagonia is one of the main coastal regions with high freshwater inputs from rivers, rain, and glaciers in the Southern Hemisphere. This study conducts an analysis of the seasonal and interannual variations in sea surface salinity and meridional geostrophic transports, specifically focusing on the Cape Horn Current, using improved satellite-derived data of sea surface salinity (SSS) and geostrophic velocities spanning an ∼11-year period (September 2011–August 2022). Our results reveal a clear salinity minimum in a coastal band between 42–54°S associated with the highest freshwater content. The average geostrophic currents are stronger south of 49°S, in line with the location of the Cape Horn Current. The average salinity minimum tends to disappear south of 54°S, with salinity values increasing slightly southward. The seasonal cycle of salinity shows the most pronounced minimum in summer (∼33.2–33.4). The greatest variability in salinity (standard deviation of salinity fields) occurs in the southern region of the Cape Horn Current. Hovmöller plots reveal two cores of minimum salinity observed in spring and summer (∼33.3–33.4). The freshwater off the Gulf of Penas contributes to the northern core. The meridional geostrophic transport differs between the northern and southern sections, with transports predominantly towards the Equator (Pole) north (south) of about 47–48°S during spring–summer. There is a marked seasonal variability in the magnitude and northern limit of the southward-flowing Cape Horn Current, being extended further north during winter and with a maximum average magnitude during summer–fall (about 2×104 m2 s−1). On the interannual scale, a major drop in surface salinity occurred off northern and central Patagonia during 2018–2019. Finally, a potential long-term freshening trend is observed in the coastal area off southern Patagonia (south of 52°S), although prolonged data records are essential to confirm this pattern. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Ocean Salinity)
Show Figures

Figure 1

26 pages, 7472 KiB  
Article
Unlocking Weather Observations at the End of the World: Late-XIX and Early-XX Century Monthly Mean Temperature Climatology for Southern Patagonia
by Pablo O. Canziani, S. Gabriela Lakkis, Adrián E. Yuchechen and Oscar Bonfilli
Climate 2024, 12(4), 51; https://doi.org/10.3390/cli12040051 - 9 Apr 2024
Cited by 1 | Viewed by 2484
Abstract
A climate analysis of the monthly mean temperatures of Southern Patagonia during the late-XIXth and early-XXth centuries was carried out as part of the international data rescue Atmospheric Circulation Reconstructions over the Earth (ACRE) program partnership in Argentina, together with other data sources [...] Read more.
A climate analysis of the monthly mean temperatures of Southern Patagonia during the late-XIXth and early-XXth centuries was carried out as part of the international data rescue Atmospheric Circulation Reconstructions over the Earth (ACRE) program partnership in Argentina, together with other data sources with regional and global records. The data from these diverse sources were combined to carry out a study in the coastal region of Patagonia, including Tierra del Fuego, between 42° S and 55° S for 11 locations. Furthermore, HadSST monthly/seasonal fields during the period 1880–1920 were also used. Both mean monthly and seasonal temperature values and timeseries variability were considered. Their analysis shows consistent behavior within the study region and compared to Southern Hemisphere mean results, which are characterized by a warm late-XIX century and a cooler early-XX century. This is also in agreement with SST variability along the coasts of Patagonia and hemispheric records. A comparison with present-day observations, where available, also yields consistent behavior. Low-frequency variability, i.e., in periods longer than 3 years, during the study period is consistent with present variability. Trend estimates at Trelew and Rio Gallegos for the period 1901–2020 yield significant trends, consistent with hemispheric warming at their latitudes. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records)
Show Figures

Figure 1

11 pages, 1917 KiB  
Article
In Situ Accumulation of CaOx Crystals in C. quitensis Leaves and Its Relationship with Anatomy and Gas Exchange
by Olman Gómez-Espinoza, Francisca I. Fuentes, Constanza F. Ramírez, León A. Bravo and Patricia L. Sáez
Plants 2024, 13(6), 769; https://doi.org/10.3390/plants13060769 - 8 Mar 2024
Cited by 1 | Viewed by 1810
Abstract
The accumulation of crystal calcium oxalate (CaOx) in plants is linked to a type of stress-induced photosynthesis termed ‘alarm photosynthesis’, serving as a carbon reservoir when carbon dioxide (CO2) exchange is constrained. Colobanthus quitensis is an extremophyte found from southern Mexico [...] Read more.
The accumulation of crystal calcium oxalate (CaOx) in plants is linked to a type of stress-induced photosynthesis termed ‘alarm photosynthesis’, serving as a carbon reservoir when carbon dioxide (CO2) exchange is constrained. Colobanthus quitensis is an extremophyte found from southern Mexico to Antarctica, which thrives in high-altitude Andean regions. Growing under common garden conditions, C. quitensis from different latitudinal provenances display significant variations in CaOx crystal accumulation. This raises the following questions: are these differences maintained under natural conditions? And is the CaOx accumulation related to mesophyll conductance (gm) and net photosynthesis (AN) performed in situ? It is hypothesized that in provenances with lower gm, C. quitensis will exhibit an increase in the use of CaOx crystals, resulting in reduced crystal leaf abundance. Plants from Central Chile (33°), Patagonia (51°), and Antarctica (62°) were measured in situ and sampled to determine gas exchange and CaOx crystal accumulation, respectively. Both AN and gm decrease towards higher latitudes, correlating with increases in leaf mass area and leaf density. The crystal accumulation decreases at higher latitudes, correlating positively with AN and gm. Thus, in provenances where environmental conditions induce more xeric traits, the CO2 availability for photosynthesis decreases, making the activation of alarm photosynthesis feasible as an internal source of CO2. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 2337 KiB  
Article
Vegetation Type Mapping in Southern Patagonia and Its Relationship with Ecosystem Services, Soil Carbon Stock, and Biodiversity
by Pablo L. Peri, Juan Gaitán, Boris Díaz, Leandro Almonacid, Cristian Morales, Francisco Ferrer, Romina Lasagno, Julián Rodríguez-Souilla and Guillermo Martínez Pastur
Sustainability 2024, 16(5), 2025; https://doi.org/10.3390/su16052025 - 29 Feb 2024
Cited by 2 | Viewed by 3349
Abstract
Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity [...] Read more.
Vegetation Type (VT) mapping using Optical Earth observation data is essential for the management and conservation of natural resources, as well as for the evaluation of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in anthropized environments. The main objective of the present work was to determine the spatial patterns of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also, we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land cover with a reliable discrimination level from field measurements. We selected 31 potential predictive environmental dataset covariates, which represent key factors for the spatial distribution of land cover such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A total of 270,292 sampling points were used for validation of the obtained classification map. The main land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open deciduous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate land cover and VT map that provides crucial information for ecological studies, biodiversity conservation, vegetation management and restoration, and regional strategic decision-making. Full article
Show Figures

Figure 1

24 pages, 24628 KiB  
Article
An Unprecedented Bloom of Oceanic Dinoflagellates (Karenia spp.) Inside a Fjord within a Highly Dynamic Multifrontal Ecosystem in Chilean Patagonia
by Ángela M. Baldrich, Patricio A. Díaz, Sergio A. Rosales, Camilo Rodríguez-Villegas, Gonzalo Álvarez, Iván Pérez-Santos, Manuel Díaz, Camila Schwerter, Michael Araya and Beatriz Reguera
Toxins 2024, 16(2), 77; https://doi.org/10.3390/toxins16020077 - 2 Feb 2024
Cited by 9 | Viewed by 3043
Abstract
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. [...] Read more.
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. Previous Karenia events with devastating effects on caged salmon and the wild fauna of Chilean Patagonia had been restricted to offshore waters, eventually reaching the southern coasts of Chiloé Island through the channel connecting the Chiloé Inland Sea to the Pacific Ocean. This event occurred at the onset of the COVID-19 lockdown when monitoring activities were slackened. A few salmon mortalities were related to other fish-killing species (e.g., Margalefidinium polykrikoides). As in the major Karenia event in 1999, the austral summer of 2020 was characterised by negative anomalies in rainfall and river outflow and a severe drought in March. Karenia spp. appeared to have been advected in a warm (14–15 °C) surface layer of estuarine saline water (S > 21). A lack of daily vertical migration patterns and cells dispersed through the whole water column suggested a declining population. Satellite images confirmed the decline, but gave evidence of dynamic multifrontal patterns of temperature and chl a distribution. A conceptual circulation model is proposed to explain the hypothetical retention of the Karenia bloom by a coastally generated eddy coupled with the semidiurnal tides at the mouth of Pitipalena Fjord. Thermal fronts generated by (topographically induced) upwelling around the Tic Toc Seamount are proposed as hot spots for the accumulation of swimming dinoflagellates in summer in the southern Chiloé Inland Sea. The results here provide helpful information on the environmental conditions and water column structure favouring Karenia occurrence. Thermohaline properties in the surface layer in summer can be used to develop a risk index (positive if the EFW layer is thin or absent). Full article
Show Figures

Figure 1

Back to TopTop